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Ácido 2,5-furanodicarboxílico, recursos renováveis, 5-hidroximetilfurfural, 
poliésteres furânicos, nanocompósitos, plastificantes não tóxicos. 

 

resumo 
 

 

Nos dias de hoje, os problemas ambientais, as mudanças climáticas, os 
recursos fósseis limitados e sua flutuação de preço, associados à atividade 
industrial (muitas vezes muito pouco ecológicas) são as forças motrizes para 
governos, empresas e cientistas encontrarem alternativas para os materiais 
preparados a partir de recursos fosséis. Neste cenário, o ácido 2,5-
furandicarboxílico (FDCA), em produto químico de origem renovável, surgiu 
como o substituto mais promissor do ácido tereftálico na síntese de diversos 
materiais, particularmente poliésteres, que possuem propriedades térmicas e 
mecânicas semelhantes. Estes materiais podem ser utilizados nas aplicações 
existentes, e em outras novas aplicações, inovadoras e de alto valor. Neste 
contexto, o desenvolvimento de polímeros e materiais sustentáveis a partir dos 
furanos é oportuno e bastante relevante. Precisamente, esta tese tem como 
principal objetivo o desenvolvimento polímeros e materiais compósitos mais 
sustentáveis a partir do FDCA e uma panóplia de compostos alifáticos 
selecionados pela sua origem renovável. Posteriormente, foi ainda avaliado o 
potencial de um novo monómero éster preparado a partir do FDCA como 
plastificante para a substituição parcial do não renovável tereftalato de di(2-
etilhexilo) em formulações de cloreto de polivínilo (PVC). 

No primeiro estudo, foi preparado um poliéster parcialmente renovável a partir 
do FDCA e do 1,4-ciclohexanodiol, nomeadamente o poli(2,5-
furanodicarboxilato de 1,4-ciclohexileno) (PCdF) com o objectivo de se obter um 
novo material com propriedades térmicas melhoradas. A sua síntese foi 
efetuada a partir de duas abordagens distintas, nomeadamente via 
policondensação em solução e politransesterificação em estado sólido. Por 
motivos comparativos, foi ainda sintetizado o homopolímero poli(2,5-
furandicarboxilato de 1,4-ciclohexanodimetileno) (PCF), devido à semelhança 
estrutural entre ambos. Homopolímeros com pesos moleculares diferentes 
foram obtidos de acordo com a abordagem de síntese e catalisadores utilizados 
(valores de Mn e Ð variando entre 4 300-14 100 g/mol e 1.2-1.7, respetivamente). 
Os materiais resultantes revelaram possuir carácter semi-cristalino com 
elevadas temperaturas de transição vítrea (valores de Tg de 175 e 105 ºC, para 
o PCdF e PCF, respetivamente) e estabilidade térmica até aos 377 ºC. Verificou-
se ainda que, a ausência do grupo metileno no homopolímero PCdF, deu origem 
a um material com estrutura de cadeia polimérica mais rígida, e 
consequentemente um valor de Tg mais elevado. 

Num segundo estudo, vários copolímeros do poli(2,5-furanodicarboxilato de 1,4-
butileno)-co-poli(2,5-furanodicarboxilato de poli(óxido de propileno)) (PBF-co-
PPOF) poli(éster-éter)s foram sintetizados a partir do 2,5-furanodicarboxilato de 
dimetilo e diferentes rácios molares do 1,4-butanodiol e do poli(óxido de 
propileno. 





 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

resumo (continuação) 

 
Os copolímeros resultantes apresentaram caráter semi-cristalino quando 
quantidades superiores de PBF foram usadas, líquidos viscosos completamente 
amorfos quando o rácio PBF/PPOF usado foi igual a 1. Mais ainda, estes 
materiais apresentaram elevada estabilidade térmica (temperaturas de 
degradação máxima entre 340-365 ºC, e baixas Tg´s (valores a variar entre os -
42.3 a -32.6 ºC), facilitando desta forma o seu processamento a mais baixas 
temperaturas. 

Adicionalmente, num terceiro estudo, abrangendo a preparação de uma série 
de nanocompósitos à base de FDCA, preparados usando os copolímeros 
poli(2,5-furanodicarboxilato de 1,4-butileno)-co-poli(diglicolato de 1,4-butileno) 
(PBF-co-PBGD e celulose bacteriana acetilada (Ac-BC). Numa primeira etapa, 
os copolímeros foram sintetizados; seguida da preparação de filmes de 
nanocompósitos, obtidos através da abordagem de evaporação de solvente. 
Curiosamente, para uma maior incorporação de unidades de BDG, estes 
materiais reforçados demonstraram um aumento de rigidez (módulo de Young 
até 1239 MPa) e elasticidade aceitável (valores alongamento até à ruptura entre 
0.6 até 25.0 %) quando comparados com os seus (co)polímeros homólogos 
puros. Além disso, foram observados valores similares para as permeabilidade 
ao oxigénio dos nanocompósitos e (co)polímeros, expandindo a exploração 
destes materiais para aplicações como embalagens. 

Finalmente, um quarto estudo, abordou a possibilidade de usar um éster 
furânico como aditivo para formulações de poli(cloreto de vinilo) (PVC) (Capítulo 
VI). A combinação dos plastificantes 2,5-furanodicarboxilato de di(2-etilhexilo) 
(DEHF) com o tereftalato de di(2-etilhexilo) (DEHT) foi efetuada de forma a 
aumentar o ‘conteúdo verde’ das formulações de PVC. Estes materiais 
demostraram possuir maior compatibilidade com a matriz do PVC 
comparativamente com os preparados apenas com o DEHF. Mais ainda, 
apresentaram características térmicas comparáveis aos preparados apenas 
com o DEHT (Tg’s entre 19.2 e 23.8 ºC) e um aumento do alongamento até à 
rutura (até 330%). Além disso, os testes de migração revelaram muito baixas 
percentagens de perda de massa, não excedendo os 0.3% e os 0.2%, 
respetivamente, para a água e para a solução PBS. Mais importante, resultados 
preliminares em testes de viabilidade celular in vitro (concentrações até 500 μM 
e máximo de 72 h) revelaram um perfil não-tóxico para ambos os plastificantes, 
DEHF e DEHT. 

Todos os materiais e químicos preparados a partir do FDCA dentro do âmbito 
desta dissertação são uma importante contribuição para a crescente procura por 
novos materiais de origem renovável, dentro de uma abordagem sustentável. 
Mais, estes materiais e químicos apresentaaram propriedades semelhantes ou 
melhoradas às dos preparados a partir de recursos petrolíferos. 
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abstract 

 
Nowadays environmental problems, climate changes, limited fossil resources 
and their price fluctuation, associated with industrial activity (often ecologically 
unsound) are the strong driving forces for governments, companies and 
scientists to find alternatives to the fossil-based materials. In this scenario 2,5-
furandicarboxylic acid (FDCA), a renewable platform chemical has emerged as 
the most promising substitute to terephtalic acid for the synthesis of several 
materials, particularly polyesters, which possess similar thermal and mechanical 
proprieties. These materials could be applied to current applications and, could 
even be applied in new, innovative and high value applications. In this context, 
the development of sustainable FDCA-based polymers and materials is timely 
and quite relevant. Precisely, the main objective of this thesis is the development 
of more sustainable polymers and composites based on FDCA and a wide 
panoply of aliphatic compounds selected for their renewable origin (PART B) 
and/or the improved thermal and mechanical properties they can impart the 
ensuing materials. Furthermore, the potential of a new FDCA-based ester 
monomer as plasticiser for partial replacement of the non-renewable di(2-
ethylhexyl) terephthalate on PVC formulations was also evaluated (PART C). 

In the first study, a partially renewable polyester based on FDCA and 1,4-
cyclohexanediol, namely poly(1,4-cyclohexylene 2,5-furandicarboxylate) (PCdF) 
was prepared aiming at preparing a new material with enhanced thermal 
properties. Its synthesis was performed by two distinct approaches, namely via 
solution polycondensation and bulk polytransesterification. For comparative 
purposes, poly(1,4-cyclohexanedimethylene 2,5-furandicarboxylate) (PCF) 
homopolyester was also synthesised, due to their related structural 
resemblance. Homopolyesters with different molecular weights (Mn and Ð values 
ranging between 4 300-14 100 g/mol and 1.2-1.7, respectively) were obtained, 
depending on the synthesis approach and catalyst used. The resulting materials 
revealed to possess semi-crystalline character with high glass transition 
temperatures (Tg values of 175 and 105 ºC for PCdF and PCF, respectively), and 
thermal stablility up to 377 ºC. It was also found that, the absence of the 
methylene group on PCdF homopolyester, lead to a more rigid polymer chain 
backbone, and accordingly to a highest Tg. 

Other studies, focused on the development of copolyesters enterelly based on 
renewable-based monomers, namely those based on FDCA, 1,4-butanediol and 
poly(propylene oxide) or diglycolic acid were performed. 





 

  
 
 
 
 
 
 
 
 
 
 

  

abstract (continuation) 

 
In a second study, several poly(1,4-butylene 2,5-furandicarboxylate)-co-
poly(poly(propylene oxide) 2,5-furandicarboxylate) (PBF-co-PPOF) poly(ester-
ether)s copolymers were synthesised using dimethyl 2,5-furandicarboxylate and 
different molar ratios of 1,4-butanediol and poly(propylene oxide). The ensuing 
copolyesters presented either semi-crystalline character when using higher PBF  
feed amounts, or completely amorphous viscous liquid was obtained instead 
when using a PBF/PPOF ratio equal to 1 . Moreover, these materials presented 
high thermal stability (maximum degradation temperatures between 340-365 ºC), 
and low Tgs (values ranging from -42.3 to -32.6 ºC), facilitating their 
processability at lower temperatures. 

Further, in a third stud, comprised the preparation of a series of FDCA-based 
nanocomposites were prepared using poly(1,4-butylene 2,5-furandicarboxylate)-
co-poly(1,4-butylene diglycolate) (PBF-co-PBDG) copolyesters and acetylated 
bacterial cellulose (Ac-BC). In a first step, PBF-co-PBDG (co)polyesters were 
synthesised; followed, in a second step, by the preparation of nanocomposites 
films obtained by solvent-casting approach. Interestingly, for higher incorporation 
of BDG moieties, these reinforced materials showed an increased stiffness 
(Young’s modulus up to 1239 MPa) and reasonable elasticity (elongation at 
break values between 0.6 to 25.0 %) compared to their neat (co)polyester 
counterparts. Furthermore, similar values of oxygen permeability of 
nanocomposites and (co)polyesters were observed, expanding the exploitation 
of these materials for packaging applications. 

Finnaly, a fourth study, addressed the possibility of using a furanic ester as an 
additive for poly(vinyl chloride) (PVC). A combination of di(2-ethylhexyl) 2,5-
furandicarboxylate (DEHF) and di(2-ethylhexyl) terephthalate (DEHT) 
plasticisers was performed into an attempt to increase the ‘green content’ of PVC 
formulations. These materials have shown to possess higher compatibility with 
the PVC matrix compared with DEHF as single plasticizer, confirmed by FTIR 
spectroscopy. Furthermore, they displayed thermal features comparable to those 
prepared with DEHT as single plasticizer (Tg’s between 19.2 to 23.8 ºC), and 
increased elongation at break (up to 330%). Moreover, migration tests revealed 
very low weight loss percentages, not exceeding ca. 0.3 and 0.2%, for water and 
PBS solution, respectively. More important, preliminary results of in vitro cell 
viability tests (concentrations up to 500 μM for a maximum of 72 h) revealed a 
non-toxic profile (around 100 %) for both DEHF and DEHT plasticisers. 

All FDCA-based materials and chemicals prepared under the scope of this 
dissertation are an important contribute for the increasing demand for new 
renewable-based products, within a sustainable approach. Further, these 
materials and chemicals, presented similar or improved properties to those 
prepared from petroleum-based resources. 
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“Fortunately, an increasing number of polymer chemists – both academic and industrial are 

considering the sustainability of their creations. The two overarching goals are to employ 

renewable resources – instead of fossil fuels – and to engineer degradation pathways that 

can operate under reasonable time frames – decades instead of millennia.” 

 

 

 

Stephen A. Miller 

(Polymer Chemistry 5, 3117-3118, 2014) 

 

 

 

 

 

 

 

 

 

 





 

Chapter I – General Introduction 

5 

 

1. The context 

In the last decades, the depletion of fossil resources and their price instability, as well as 

the environmental problems and climate changes associated with their massive consumption, 

have driven the scientific community to find renewable and sustainable alternatives to 

replace petro-based feedstocks for energy/fuels, chemicals and materials production. In this 

context the attention on biomass feedstocks has increased exponentially, since it is a carbon-

neutral and renewable resource that can be converted into energy/fuels, chemicals and 

materials, through a bio-refinery process (Figure 1.1).1,2 

 

 

Figure 1.1. Biorefinery concept (adapted from reference 2). 

 

Biomass components specially polysaccharides and the ensuing monosaccharides, due to 

their abundance, will play a central role in the production of high quantities of chemical 

building-blocks, produced by hydrolysis, oxidation, reduction, dehydration, isomerisation, 

and hydrogenation, among other reactions, through biorefineries.3–6 One of the most 

important sugar derived building block is 5-hydroxymethylfurfural (5-HMF), obtained from 

hexoses. 5-HMF is considered a key precursor of a wide variety of chemicals and biofuels,7,8 

among which 2,5-furandicarboxylic acid (FDCA) is by far the most important.6 

FDCA is an heteroaromatic diacid (also detected in the human body),9 with high chemical 

stability, that can be used under the typical polymerisation reaction conditions, particularly 

in polyesters synthesis.10,11 Further, due to the structure similarity between FDCA and 1,4-
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terephthalic acid (TPA) (Figure 1.2),12,13 FDCA is considered as a potential renewable 

substitute of the former for the the preparation of several polymeric materials (which 

includes thermoplastics), plasticisers and thermosets, among others.14  

 

 

Figure 1.2. Chemical structures of FDCA and TPA. 

 

Among FDCA-based polyesters, poly(ethylene 2,5-furandicarboxylate) (PEF) and 

poly(1,4-butylene 2,5-furandicarboxylate (PBF) are the most studied due to their structural 

resemblance with poly(ethylene 1,4-terephtalate) (PET) and poly(butylene 1,4-

terephthalate) (PBT), their petroleum-based counterparts.15,16 Moreover, FDCA has been 

also used in the synthesis of several other polyesters,17,18 mainly incorporating aliphatic diols 

possessing short to long linear chains from 3 to 20 carbon atoms, as well as branched and 

cyclic ones.18,19 The resulting FDCA-based homopolyesters have displayed wide range of 

thermal and mechanical properties, which could be very useful for the production of a variety 

of polyesters derived materials. Moreover, most of these polyesters are still entirely prepared 

from renewable resources. For example, furanic-based homopolyesters prepared with 

medium to long chain linear diols, tend to be flexible materials (more than PEF and/or PBF), 

and at same time they show adequate thermal stability, finding potential applications as films 

and fibers.20–23 Oppositely, when branched diols are incorporated into the homopolyester 

chains, stiffer materials are obtained, mostly due to their constricted molecular structure, 

typically presenting higher glass transition temperatures (Tg) and increased thermal stability 

compared to linear homopolyesters with the same carbon number chain.24–27 In the same 

line, the incorporation of more rigid cyclic monomers, such as 1,4:3,6-dianhydrohexitols or 

1,4-cyclohexanedimethanol in the backbone of FDCA-based polyesters has been used as an 

approach to obtain materials with enhanced thermal properties.26,28–31  

Nevertheless, thinking on their life-time ending, several studies reported their hydrolytic 

and enzymatic degradation, revealing that these materials could be degraded in specific 

medium conditions,24,32 however their biodegradability is still far from the desired 

specifications.33 In this context, in order to obtain materials with enhanced thermal and 
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mechanical properties, as well as biodegradable, the copolymerisation between FDCA (or 

derivatives) and aliphatic comonomers has been studied.  

Copolymerisation enables the possibility to obtain unlimited variety of materials with 

tuned properties, simply by changing the aliphatic and/or aromatic nature and relative 

amounts of the comonomers in the copolymer backbone. Moreover, to overcome the limited 

biodegradability of FDCA-based homopolyesters, copolymerisation with aliphatic diacids 

or hydroxyacids, namely succinic acid (SA), adipic acid (AS) and poly(lactic acid) (PLA), 

has proved to be a promising strategy to obtain materials with tuned biodegradability, and at 

same time with enhanced thermal and mechanical properties. Indeed, recently, copolyesters 

prepared from PEF and variable amount of PLA oligomers, showed relevant 

(bio)degradability, namely through hydrolytic degradation and soil degradation tests.34,35 

These studies have introduced a completely new renewable, biodegradable and non-toxic 

aromatic-aliphatic generation of copolymers. 

Nevertheless, besides the interest around FDCA-based polyesters, other materials have 

also been explored aiming to achieve enhanced and/or refined properties, namely better 

processability and crystallinity, such as composites or hybrid materials. Nanocomposites 

prepared with PEF and small quantities of nanocrystalline cellulose (around 4 wt %) have 

demonstrated an enhanced crystallization process in the presence of fibers.36 Furthermore, 

PEF-derived hybrid materials were also prepared by compounding PEF with SiO2 and TiO2 

(added during the synthesis of the polymer), revealing an increase on the PEF molecular 

weight.37 

Finally, the use of FDCA in the preparation of other products has also been attempted, 

such as for example, in the synthesis of plasticizers, namely di(2-ethylhexyl) 2,5-

furandicarboxylate (DEHF).38,39  

In this scenario, the main aim of the present work was to develop FDCA-based materials 

with enhanced properties including thermal, mechanical, gas barrier and degradability 

properties, as well as, products that could act as plasticisers, and in the future replace,  fossil-

based materials. 
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2. Objectives and Outline of the thesis 

Several problems associated to the use of petroleum-based materials have been reported in 

the last decadesrelated with sustainability. It has become clear that to achieve a more sustainable 

environment it is imperative to find new renewable alternatives to polymer materials. In this 

context, this thesis emerged to fulfil that necessity, reporting the synthesis and characterisation 

of several FDCA-based materials with interesting properties, very similar to those obtained 

from non-renewable resources. 

This appraisal is divided into four parts and seven chapters focusing firstly on a general 

background to furanic-based polyesters and subsequently on the description of the polyesters, 

nanocomposites and chemicals developed using FDCA. 

In PART A is provided a general introduction to the context of this thesis (Chapter I). The 

synthesis, ensuing properties and main applications of FDCA-based polyesters are briefly 

reviewed in Chapter II. 

PART B is divided in three chapters, and it is focused on the synthesis of FDCA-based 

polyesters and nanocomposites. 

In Chapter III is described the synthesis and characterisation of poly(1,4-cyclohexylene 

2,5-furandicarboxylate) (PCdF). In addition, a comparative study between PCdF and poly(1,4-

cyclohexanedimethylene 2,5-furandicarboxylate) (PCF) is also described.  

Chapter IV is devoted to the study of the almost unexplored furanic poly(ester-ether)s 

(PEEs) copolymers. In this Chapter is is described the synthesis and characterisation of a series 

of copolymers based on PBF and poly(propylene oxide) (PPO). 

Chapter V deals with the preparation of several nanocomposites, prepared using 

poly(butylene 2,5-furandicarboxylate)-co-(butylene diglycolate) (PBF-co-PBDG) copolyesters 

and acetylated bacterial cellulose (Ac-BC).  

PART C is dedicated to the study of di(2-ethylhexyl) 2,5-furandicarboxylate (DEHF) as a 

plasticiser for poly(vinyl chloride) (PVC). Chapter VI handles with the synthesis of DEHF and 

the preparation of PVC blends incorporating both DEHF and di(2-ethylhexyl) terephthalate 

(DEHT) in order to assess the progressive replacement of the non-renewable DEHT in PVC 

formulations. 
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Finally, in PART D the main conclusions of the work carried out under the auspices of this 

thesis are presented, together with some perspectives for future work. 
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1. FDCA-based monomers and polymers: synthesis, properties and main 

applications 

 

1.1. FDCA-based polyesters prepared through polyesterification reactions 

FDCA is a dicarboxylic acid derived from biomass. Typically obtained from sugars via 

dehydration of 5-HMF, followed by oxidation. FDCA or its derivatives, such as 2,5-

furandicarbonyl chloride (FDCDCl), dimethyl 2,5-furandicarboxylate (DMFDC), or 

bis(hydroxalkyl) 2,5-furandicarboxylates (BHAFDC) (Figure 2.1) are used in 

polyesterification reactions in order to obtain FDCA-based polyesters.1–3 

 

 

Figure 2.1. Synthesis of the starting FDCA-based comonomers. 

 

Polyesters, such as those based on FDCA, are typically prepared by step-growth 

polymerisation. In step-growth polymerisation, the polymer grows by a series of steps 

(Figure 2.2), and high molecular weight polymers result from a large number of steps. In the 

case of polyesters, this kind of polymerisation is usually referred to as polycondensation 

and/or polytransesterification, depending if water or either low-molecular weight products 

(such as or alcohols) are being released during the formation of the polymer chains, 

respectively.4 
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Figure 2.2. Generic representation of a step-growth polymerisation reaction (adapted from 

reference 4). 

 

In this polymerisation reaction, initially a monomer reacts with another monomer to form 

a dimer, then the dimer may react with another dimer to produce a tetramer, or with another 

monomer to form a trimer, and so on, until a high molecular weight polymer is obtained 

(Figure 2.2).4 

This process is governed by random intermolecular reactions between species with 

different molecular sizes, where the average molecular weight increases slowly until near 

the end of the polymerisation where it increases rapidly.5 Carothers in 1929 was the pioneer 

in the study of polyester synthesis by polytransesterification.6,7 In his work an array of 

combinations of aliphatic diacids and aliphatic diols were employed in the preparation of 

several aromatic and aliphatic polyesters.  

Importantly, Carothers studies provided the fundamentals for the polymerisation kinetics, 

establishing a relation between the number-average degree of polymerisation (𝐷𝑃𝑛
̅̅ ̅̅ ̅) and the 

extent of reaction (Carothers’ equation) for linear polyesterifications (and also polyaddition): 
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𝐷𝑃𝑛
̅̅ ̅̅ ̅ =  

1

1−𝑝
      (1) 

 

where p, is the fraction of the functional groups that have reacted at time t. 

 

A consequence of Carothers’ equation is that to achieve high DPs in step-growth 

polymerisation a high conversion of the initial reagents (p) is required, and for that goal to 

be achieved an absolutely accuracy between stoichiometry together with the constant 

removal of by-products is fundamental. These reactions require, in general, long reaction 

times, high temperatures and often high vacuum.8 

The polytransesterification reaction could be performed through several approaches such 

as, in bulk, solution and interfacial, depending on the final application of the resulting 

polymers, as well as the nature of the corresponding monomers.9 One of the most used 

method to prepare FDCA-based polyesters is definitely bulk polyesterification, and mainly 

performed in two steps. The first step could involve: i) transesterification of a dimethyl ester 

with a diol to form an intermediate diester; or ii) the direct esterification of a diacid with a 

diol. In the second step, a bulk polytransesterification is performed to achieve the 

corresponding homopolymer (Figure 2.3).10 

 

 

Figure 2.3. Polyesters syntheses through the two-step polycondensation reaction approach. 

 

As mentioned before, polyesters can also be prepared through direct solution 

polycondensation reaction (Figure 2.4).1,11 The exploitation of that approach, typically 

allows the use of moderate reaction conditions, in terms of, for example, temperature and 

pressure. Hence, enabling, the use of a variety of volatile or thermally unstable diols. 
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Typically, these reactions are performed with diacid dichlorides between 0 to 50 ºC, using 

the Schotten-Baumann reaction (Figure 2.4).8 

 

 

Figure 2.4. Direct solution polytransesterification reaction of a diacid dichloride with a diol. 

 

Finally, in some studies a third polymerisation step called solid-state polymerisation 

(SSP) can be introduced after polytransesterification,10 to raise the molecular weights of the 

FDCA-based homopolyester (which cannot be achieved in the typical bulk 

polytransesterification process).12–17 This post-polymerisation step is highly used 

industrially to increase polyesters molecular weight, enabling their use in specific 

applications, namely in the manufacture of bottles, packaging, and fibbers.17 Nevertheless, 

the SSP process is very complex and still not fully understood, mainly due to the influence 

of the diffusion process and crystallisation on the reaction kinetics. The SSP occurs when a 

semi-crystalline polymer is heated above the glass transition temperature (Tg) of the 

amorphous phase, but below the melting temperature (Tm) of the crystalline phase, enabling 

the chain mobility necessary to allow further polycondensation reactions to take place 

(Figure 2.5).18 

 

 

Figure 2.5. Schematic representation of limited mobility of the end groups in the amorphous 

region a) before and b) after SSP (adapted from reference 18). 

 

The reaction equilibrium shifts in favour of the polycondensation due to by-products 

removal from the reaction system by an inert gas flow, or under vacuum. Due to the use of 
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lower temperatures than those usually applied in bulk polytransesterification, side reactions 

and thermal degradation are limited in SSP. 13,14 

The understanding and careful control of all the variables concerning 

polytransesterification reaction is absolutely critical, and they have to be taken into 

consideration to successfully prepare FDCA based polyesters, as will be discussed in more 

detailed in the next sections. 

 

1.2. FDCA-based polyesters 

As already mentioned in Chapter I, in the last decades, the need to promote a new 

paradigm of sustainable development based on renewable resources, led to a tremendous 

increase in the interest on polymers from renewable resources, and particularly in FDCA-

based polyesters.1–3 In fact, the synthesis of polyesters bearing furan moieties started in 1946, 

with the synthesis of poly(ethylene 2,5-furandicarboxylate) (PEF) by the British Celanese.19 

However, only 32 years later by the hand of Moore and Kelly,20,21 their study was again 

reported. 

Among the myriad of FDCA-based polyesters, those possessing aliphatic diols have been 

the most investigated.22–27 Actually, short linear aliphatic chains, as well as, branched and/or 

cyclic aliphatic diols, and some aliphatic diacids and hydroxyacids (Figure 2.6) have been 

used in the synthesis of FDCA-based polyesters. For example, PEF, poly(1,3-propylene 2,5-

furandicarboxylate) (PPF) and PBF, among others, were the most studied FDCA-based 

polyesters.3,28 These polyesters have a wide range of interesting thermal and mechanical 

properties, and in the latter case, also potential (bio)degradability. These furanic-aliphatic 

polyesters will be described in more detail in the following sections. Furthermore, furanic-

aliphatic polyesters have been proposed for the most variable applications, such as, beverage 

packaging, films, fibbers, powder coatings, among others, revealing that they could be the 

renewable alternative to PET and other TPA-based polyesters.28 

Other FDCA-based polyesters, are entirely aromatic in nature, are being prepared using 

FDCA and other aromatic compounds (Figure 2.7), in order to obtain more rigid materials, 

with enhanced thermal properties, as well as, aiming to prepare liquid crystalline 

polyesters.11,20,22,29–35 
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Figure 2.6. Examples of (mainly renewable) aliphatic comonomers already used to produce 

FDCA-based polyesters.36 
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The studies involving these furanic-aromatic polyesters have been described both in 

scientific papers,11,20,22,32,33,35 and patents,29–31,34 and were essentially focused in lignin-based 

monomers, such as, vanillic, syringic, salicylic, isophthalic and 4-hydroxybenzoic acids, 

among others, and also on sugar-based monomers like for example the 2,5-

bis(hydroxymethyl)furan (Figure 2.7). 

 

 

Figure 2.7. Example of aromatic monomers used in the synthesis of furanic-aromatic 

polyesters.36 

 

Despite the number of furanic-aromatic polyesters described in the literature, this group 

of polyesters will not be further described because it is out of scope of the present thesis. 

 

1.2.1. Furanic-aliphatic homopolyesters  

The furanic-aliphatic homopolyesters are the most investigated FDCA-based polyesters 

derived from FDCA, mostly due to the resemblance in terms of thermal and mechanical 

properties with those obtained from TPA, as will be demonstrated in the following sub-

sections. In this vein, the following paragraphs will be devoted to the discussion of their 

synthesis, thermal and mechanical features, and presented in an increasing order of number 

of methylene groups, starting for the linear, followed by branched, and finally for the cyclic 

ones. 
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1.2.1.1. Synthesis  

The most highlighted FDCA-based polyester is PEF (Figure 2.8), the furan counterpart 

of PET, due to their similar thermal and mechanical properties.1 In fact, as mentioned before, 

PEF is the potential substitute of PET, and for that reason, an extensible literature is found 

devoted to its synthesis and characterisation (Table 2.1).12,36,37,41,53–55,57–69,70–73 

 

 

Figure 2.8. Chemical structure of PEF and PET. 

 

Table 2.1. Reaction conditions to prepare PEF and related properties. 

Precursor 
Reaction conditions Mn × 104 a 

(g mol-1) 
Đb Ref.c 

T (oC) t (h) catalyst 

BHEFDC 70 – 250 - Sb2O3 2.24 1.92 1,11,22 

FDCDCl r.t. - pyridine 0.20 1.25 11,22 

FDCA 

160 – 220 7.5 - - - 19,51 

200 – 255 15 Sb2O3 0.48 - 38 

180 – 240 5 Ti(OBu)4 1.55 1.21 45 

150 – 245 5 – 9.2 Ti(OPr)4 1.25 – 10.53 2.39 – 2.60 15,23 

180 – 240 5 Sn(Oct)2 3.20 1.24 

45 
180 – 240 5 SnOBu 4.74 1.42 

180 – 240 5 GeO2 3.42 1.32 

180 – 240 5 Sb(Ac)3 2.41 1.78 

DMFDC 

160 – 220 7.5 - - - 19,51 

150 – 230 5 – 16 Ti(OPr)4 1.45 – 1.91 1.80 – 2.44 15,26 

150 – 230 5 BTTO; TNPP 5.68 3.00 15 

160 – 250 - Ti(OBu)4 1.12 - 40,43,44 

170 – 240  SnOxa   44 

170 – 280 4 Sb2O3 - - 38,44,46 

170 – 240  Sb2(EG)3   44 

- d - d - d 4.70 2.34 39,41 

180 – 240 4 SnOBu 4.61 1.31 45 

With SSP approach 

 

195 24 - d 8.30 1.95 14 

195 - Ti(OPr)4 / Sb2O3 3.10 2.58 13 

225 5 

Ti(OBu)4 1.27 - 
16,17 Ti(OPr)4 1.31 - 

DBTO 1.00 - 
a Number-average molecular weight determined by SEC; b Polydispersity index; c References; d PEF 

provided from Coca-Cola company. 
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PEF and in general other FDCA-based homopolyesters have been routinely prepared by 

the two-step polytransesterification of FDCA, DMFDC and other FDCA derivatives 

(bis(hydroxyalkyl) 2,5-furandicarboxylate), with different aliphatic diols, such as ethylene 

glycol (EG), 1,3-propanediol (PD), 1,4-butanediol (BD), 2,3-butanediol (2,3-BD), 2,2-

dimethyl-1,3-propanediol (DMPD), diethylene glycol (DEG), among others (Figure 2.9). 

Other interesting approaches studied were ring-opening polymerisation (ROP)47,52 or 

biocatalysis processes using Candida Antarctica Lipase B (CALB) enzyme.53 The most 

relevant properties of furanic-aliphatic homopolyesters are summarised in Table 2.2. 

 

 

Figure 2.9. Illustration of some furanic-aliphatic homopolyesters. 

 

FDCA-based homopolyesters synthesis has been performed in a relative large array of 

conditions, with a range of temperatures between 90 to 230 ºC (up to 280 ºC in case of PEF), 

for several hours (4 to 24 h), and in the presence of different catalysts, such as, dibutyltin(IV) 

oxide (DBTO), titanium(IV) isopropoxide (Ti(OPr)4), antimony(III) oxide (Sb2O3), 

tetrabutyl titanate (Ti(OBu)4), among others.3,27 In fact, several works were devoted to the 

study how catalysts influence the molecular weight and coloration of the final 

polyesters.12,13,15,19,42,45,54 

The effect of several other catalysts on the molecular weight of PEF prepared via direct 

polytransesterification of FDCA (Table 2.1), revealed that Ti(OPr)4 was the most effective 

catalyst to achieve high number-average molecular weights (Mn) , while Sb2O3 was the less 

effective. 
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Table 2.2. Relevant thermal and mechanical properties of linear FDCA-based polyesters. 

Polyester Diol 
Synthetic 

procedure 

Mn × 104 a 

(g mol-1) Đb 
Tg

c 

(oC) 

Tm
d 

(oC) 

Td,5%
e 

(oC) 

E 

(MPa) 

σm 

(MPa) 

Ԑb 

(%) 
Ref.e 

Linear diols 

PEF EG A; B; C; D 0.48 – 10.53 1.8 – 2.6 71 – 91 205 – 226 300 – 376 1 900 – 2 450 35 – 85 3 – 4 
12,36,37,41,53–55,57–

69,70–73 

PPF 1,3-propanediol (PD) A 0.12 – 6.02 1.3 – 2.4 40 – 65 169 – 180 300 – 333 1 150 68 46 11,14,23,26,37,55–59 

PBF 1,4-butanediol (BD) A; D 0.12 – 23.21 1.4 – 3.3 25 – 39 163 – 177 304 – 370 1 100 – 1 900 20 – 56 3 – 284 

14,23,62–

64,26,37,38,47,52,55,

60,61 

PPeF 1,5-pentanediol (PeD A -g -g 5 – 19 83 – 94 - - - - 43,65 

PHF 1,6-hexanediol (HD) A; B; D 1.31 – 3.21 1.5 – 2.1 5 – 28 141 – 157 375 496 36 210 20,23,25,53,58 

PHeF 1,7-heptanediol (HeD) A -g -g 5 83 - - - - 65 

POF 1,8-octanediol (OD) A; D 0.33 – 4.10 1.5 – 2.3 -5 – 22 118 – 149 340 – 384 311 – 407 20 – 28 14 – 160 23,24,37,43,53,66,67 

PNF 1,9-nonanediol (ND) A 2.10 – 4.00 1.7 – 2.1 -30 – -4 69 – 92 387 145 – 252 19 – 20 149 – 658 2,65–67 

PDeF 1,10-decanediol (DeD) A; D 2.0 –5.16 1.6 – 2.1 -8 – 1 108 – 116 363 –386 200 – 275 11 – 17 52 – 160 27,37,43,53,66,67 

PDoF 1,12-dodecanediol (DoD) A 2.54 – 3.94 1.8 – 2.3 -22 – -5 104 – 111 390 181 – 267 10 – 16 82 – 130 43,58,66–68 

POdF 1,18-octadecanediol (OdD) A 2.21 2.1 - 98 - - - - 58 

PE20F 1,20-eicosanediol (E20D) A 3.12 1.4 7h 107h 358 - - - 69 

PEGF Poly(ethylene glycol) (PEG) A; D 0.18 – 1.33 1.3 – 1.8 -35 – -7 49 248 – 318 - - - 70 

PDEGF diethylene glycol (PDEG) B; D 0.10 – 3.29 1.1 – 2.7 13 – 40 56 314 – 375 - - - 53,71 

Branched diols 

1,2-PPF 1,2-propanediol (1,2-PD) A 1.41 2.5 89 - - - - - 71 

2,3-PBF 2,3-butanediol (2,3-BD) A; B; D 0.20 – 13.00 1.5 – 2.6 71 – 113 - 276 – 301 - - - 26,53,72 

PMePF 2-methyl-1,3-propanediol (MePD) A -g -g 55 - > 300 - - - 73 

PDMPF 2,2-dimethyl-1,3-propanediol (DMPD) A 0.12 – 6.02 1.3 – 4.0 68 – 71 197 – 198 356 1 648 45 4 59,74,75 

Cyclic diols 

PBHMTF 2,5-bishydroxymethyltetrahydrofuran B - - - - - - - - 20,21 

PIF isoidide B 0.5 7 – 2.15 1.3 140 – 196 - 275 - - - 11,22,76 

PIDF isodide-2,5-dimethanol A 3.03 2.0 94 250 375 - - - 77 

PImF isomannide B 1.49 – 2.04 - 187 – 191 - - - - - 76 

PIsF isosorbide A; B; D 0.90 – 2.50 1.7 137 – 194 - 350 - - - 11,22,53,73,76,78 

PCF 1,4-cyclohexylenedimethanol (CHDM) A; B - - 74 – 86 262 > 300 - - - 73,79–82 
a Number-average molecular weight determined by SEC; b Polydispersity index c Glass transition temperature determined from the DSC 2nd heating scan. d Melting temperature determined 

from DSC 1st heating scan. e Degradation temperature at 5% weight loss. f References; g Not determine by SEC; h Determined from DMTA. 

Synthetic procedure: A- Two-step bulk polytransesterification; B- Direct solution polytransesterification; C- Ring-opening polymerisation (ROP); D- Biocatalytic process. 
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Another important aspect regarding furanic-aliphatic homopolyesters synthesis was the 

colour of the resulting materials due to its importance in some applications. In this context, 

several studies were focused on the effect of different catalysts, feed monomer, temperature, 

among others, on the colour of the achieved materials.12,13,15,19,42 In fact, when FDCA is the 

starting monomer coloured polymers were obtained, since higher temperatures were 

needed.15 

Furthermore, titanate-based catalysts were found to be the most effective on the 

increasing of molecular weights compared with tin-based catalysts, however exhibiting more 

intense coloration.42  

In addition, polytransesterification reactions combining long time and high temperatures 

also revealed an increase on the colour intensity, mostly due to the decomposition of by-

products.54 For these reasons, high molecular weight furanic-aliphatic homopolyesters 

synthesis has been performed using DMFDC as starting monomer, as well as, in the presence 

of titanium-based catalysts at less drastic temperatures (90-220 ºC) (Table 2.2). 

Other FDCA diester monomer derivatives were also used to synthesise PEF and poly(1,3-

propylene 2,5-furandicarboxylate) (PPF), namely bis(hydroxyethyl) 2,5-furandicarboxylate 

(BHEFDC) and bis(hydroxypropyl) 2,5-furandicarboxylate (BHPFDC), respectively, 

leading to polymers with Mn of 22 400 and 21 600 g/mol, respectively.1,11,22 However, when 

compared with DMFDC, bis(hydroxyalkyl) 2,5-furandicarboxylates have the disadvantage 

of needing hard purification procedures involving, long periods of time (several days) and 

high vacuum to the complete elimination of the excess diol that remain from the 

esterification reaction. 

In some cases, the direct solution polytransesterification reaction was adopted, in order 

to avoid the problems of decomposition and discoloration that typically occur due to bulk 

polytransesterification reactions conditions adopted needed. However, the molecular weight 

of the ensuing polymers are typically modest. For example, PEF was prepared through this 

procedure by Gandini et al.,1,11 and a PEF with a degree of polymerisation (DPn) of about 

70 was reported,11 instead a DPn of 250 obtained from the two-stage bulk 

polytransesterification approach.1 Also a series of poly(poly(ethylene glycol) 2,5-

furandicarboxylate) (PEGF) homopolyesters were prepared by Sousa et al.70 via direct 

solution polytransterification reaction of FDCDCl with PEG, comprising different molecular 
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weights, namely 200, 400 or 2000 g/mol. The resulting homopolyesters presented Mn and Đ 

values from 1 800 to 13 300 g/mol and 1.3 to 1.8, respectively. 

Direct solution polytransesterification is also very useful when diols with high boiling 

point are used, e.g. cyclic ones.11,20–22,76,79 Several homopolyesters were prepared from 

FDCDCl and cyclic aliphatic diols, such as, 2,5-bis(hydroxymethyl) tetrahydrofuran,20,21 

1,4:3,6-dianhydrohexitols (isomannide, isosorbide and isoidide)). Moore and Kelly in 

197820,21 reported the first study of direct polytransesterification of FDCDCl with 2,5-

bishydroxymethyltetrahydrofuran, however no characterisation was provided (Figure 2.10). 

 

 

Figure 2.10. Direct solution polytransesterification of PBHMTF.20,21 

 

SSP has sometimes been introduced after bulk polytransesterification to increase the 

molecular weights of polyesters. In the particular case of PEF,12–14,16,17 for example, Knoop 

et al.14 reported the increase in the initial PEF Mn from 8 000 g/mol to 25,000 g/mol, and 

then to 83,000 g/mol, after 24 and 72 h, respectively, at 180 ºC. SSP revealed to be an 

important tool to obtained materials with high molecular weights that could be used for the 

manufacturing process of packaging and bottles applications.17 

 

1.2.1.2. Thermal and crystallinity behaviour 

The study of the interesting thermal properties of FDCA-based homopolyesters was also 

deeply investigated. 12,14,24,25,27,40,41,56,60,62–64,67,68,74,83–95 The majority of these studies where 

devoted to the determination of the main thermal properties of these polyesters, namely glass 

transition (Tg) and melting transition (Tm) temperatures. However, other authors were more 

focused on their thermal stability and decomposition kinetics, crystallisation kinetics and 

dynamics, as well as, on their chain conformations.1,11,12,14,26,38,40–43,45,54,55,83–96 

PEF has been described as a highly crystalline polymer (maximum degree of 

crystallisation around 60%), thermally stable up to 300 ºC, and with Tg and Tm temperatures 

between 71-91 ºC and 205-226 ºC, respectively (Table 2.2). Like PEF, PPF and PBF are also 

semi-crystalline polymers, with Tg values ranging from 40-65 and 31-39 ºC, and Tm values 
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of 169-180 and 163-177 ºC, respectively (Table 2.2). Typically, FDCA-based 

homopolyesters prepared from linear diols presented semi-crystalline character, with Tg´s 

and Tm´s values decreasing with the increasing number of even methylene groups of the 

corresponding diol chain (Table 2.2). In the case of homopolyesters prepared with odd 

number of methylene groups, namely poly(1,5-pentylene 2,5-furandicarboxylate) (PPeF), 

poly(1,7-heptylene 2,5-furandicarboxylate) (PHeF) and poly(1,9-nonylene 2,5-

furandicarboxylate) (PNF), their Tm´s also decreased with the methylene group number 

increasing, and they are lower than those observed for other furanic-even-number-aliphatic 

homopolyesters (Table 2.2).  

Moreover, a series of PEGFs’ were prepared with PEG, comprising different molecular 

weights, namely 200, 400 or 2000 g/mol.70 The resulting homopolyesters displayed in their 

DSC traces Tg values of -6.5, -29.0, and -35.1 ºC for PEGF200, PEGF400 and PEGF2000, 

respectively. The only Tm peak was observed for PEGF2000 with the value of 49.1 ºC, 

associated with the longer flexible PEG segment. 

On the contrary, furanic-aliphatic homopolyesters prepared with branched and cyclic 

diols, usually results in more amorphous materials, displaying only Tg´s on their DSC traces 

(Table 2.2). In the case of the polyesters reported in Table 2.2 prepared from branched diols, 

Tg values were higher than the corresponding homopolyesters synthesised with linear diols 

with the same number of carbon atoms. Moreover, the highest Tg values reported are 

attributed to homopolyesters prepared with cyclic diols, due to their structural rigidity and 

more constricted mobility chain. Although, only few homopolyesters do not follow this 

tendency, displaying a semi-crystalline nature (Table 2.2), which is the case of poly(2,2-

dimethyl-1,3-propylene 2,5-furandicarboxylate) (PDMPF), PIDF and PCF. The presence of 

branched and/or side groups in the chains of the latest polymers, namely methyl and 

methylene ones (in the case of the branched and cyclic diols, respectively), promoted a more 

stable chain configuration, thus facilitating the molecular mobility, and consequently 

increase the crystallinity of the related homopolyesters. 

Nevertheless, some studies reported the existence of three distinct peaks in DSC heating 

traces, for samples crystallized at different temperatures for some semi-crystalline furanic-

aliphatic homopolyesters.12,14,24,25,27,40,41,56,60,62–64,67,68,74,83–95 For example, in Figure 2.11 is 

represented this multiple melting behaviour for PBF samples crystallized at different 

temperatures and heating rates. 
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A very small peak (peak I) can be observed just after the cold-crystallization temperature 

(Tcc) and it is usually attributed to the melting of the secondary crystals. The middle 

temperature peak (peak II) corresponds to the melting of the original crystals formed during 

the isothermal crystallization stage, and finally, the third melting peak (peak III) is related 

to the re-melting process (reorganisation mechanism). These results suggest that, rather than 

re-crystallisation, two populations of lamellae with different stabilities were responsible for 

these multiple melting behaviour.40 

 

 

Figure 2.11. DSC heating scans of PBF a) at 20  C/min for samples crystallized from the 

melt at different temperatures and b) at different heating rates for PBF samples crystallized 

at 145 ºC for 15 min (adapted from reference 62). 

 

Apart from the extended literature on the crystallisation dynamics of furanic-aliphatic 

homopolyesters, several other studies have been focused on their thermal stability and 

decomposition kinetics.2,43,54,55,73,74 From Table 2.2 it is possible to observe that, in general 

all homopolyesters are high thermally stable materials with degradation temperature at 5% 

weight loss (Td.5%) ranging from 248 (PEGF) to 390 ºC (poly(1,12-dodecylene 2,5-

furandicarboxylate)-PDoF), depending on their structure and molecular weights. It was 

noted that Td.5% values increase with the increasing of the carbon atoms of the diol used.  

Moreover, Bikiaris and Papageorgious group2,43,54,55,73,74 presented a detailed 

investigation on the thermal stability and decomposition kinetics of several furanic-aliphatic 

polyesters, namely PEF, PPF, PBF, PPeF, PHF, POF, PNF, PDef, PDoF, PMePF, PDMPF, 

PIsF and PCF using TGA and pyrolysis-gas chromatography/mass spectrometry (Py-
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GC/MS). In general, for linear furanic polyesters the β-hydrogen bond scission was the 

primary decomposition mechanism (Figure 2.12), with vinyl- and carboxyl-terminated 

compounds formed as main degradation products.2,43 Furanic-cyclic aliphatic polyesters also 

followed the β-scission mechanism.73 

 

 

Figure 2.12. Intermolecular β-hydrogen bond scission (adapted from reference 43). 

 

A more distinct decomposition mechanism was observed for PMePF polyester.74 Due to 

the fact that this polyester do not possess β-hydrogens, and that no vinyl-terminated 

compounds were detected, the β-hydrogen scission was excluded as decomposition 

mechanism. In this particular case, the authors proposed a new decomposition mechanism, 

where only radical scission processes take place. 

These results were quite important, since they could help to choose the most suitable 

methods or fillers to enhance the thermal stability of the ensuing polyesters. 

 

1.2.1.3. Mechanical properties 

Tensile tests have been extensively used to mechanically characterise furanic-aliphatic 

homopolyesters.14,23,27,41,59,61,66,67,75 In general, for these polymers the Young’s modulus (E) 

decreased with the increasing number of methylene groups, oppositely to the elongation at 
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break (Ԑb) that increased instead (Table 2.2). This has been associated to the increase chain 

mobility with the increasing number of methylene groups, resulting in high flexible 

materials. Moreover, all furanic-aliphatic polyesters represented in Table 2.2 are 

mechanically stable materials with PEF exhibiting the highest Young’s Modulus at 2 450 

MPa and PNF the lowest, at 252 MPa, and elongations at break ranging from 4 to 658%. 

PEF and PPF exhibit the highest tensile strength, 85 and 68 MPa, respectively, followed 

from PBF (56 MPa) while PDeF and PDoF have the lowest 17 and 16 MPa, respectively. 

 

1.2.1.4. Barrier properties 

The oxygen, carbon dioxide, and water permeabilities of PEF, PPF and PDMPF was 

extensively study by several authores,39,41,57,59,75,97–101 showing that these homopolyesters 

exhibit higher barrier properties than PET. In fact, PEF pocesses ~11 times lower oxygen 

permeability than its petroleum-based counterpart (0.114 and 0.0107 barrer for PET and 

PEF, respectively).41 Moreover, in the case of carbon dioxide, this difference was even 

higher, both in terms of permeability as diffusivity.97 A reduction of 19 and 31 times was 

observed in PEF permeability and diffusivity values, respectively, when compared to PET. 

The reduced permeability in PEF is a result of the reduced diffusion, associated to chain 

motion reduction.41 This is mainly associated to furan ring-flipping hindrance. Burgess et 

al.41 pointed out that the non-linear axis of furan ring rotation and ring polarity is thought to 

hinder this mechanism. 

The kinetic and equilibrium sorption on water was also evaluated for PEF and PET 

polyesters.98,99 PEF showed a higher equilibrium water uptake (~1.8x) as compared to PET 

due to its higher affinity with water.98 Additionally, PEF exhibited a significant reduction in 

the water diffusion coefficient compared to PET (~2.8x), due to the PEF chain restriction 

mobility.99  

With respect to gas barrier properties of PPF, they have shown to be inferior to those of 

PEF.57 In fact, PPF showed a gas permeability to O2 and CO2 of 2.44×10-3 and 2.88 ×10-3 

cm3m-2day-1bar-1, and PEF of 7.02×10-3 and 1.71×10-1 cm3m-2day-1bar-1, respectively. These 

authors,57 suggested that the presence of an additional methylene group in the PPF subunit 

with respect to PEF, could favoured the syn conformation of FDCA and consequently 

increase the C–H···O interactions, improving the barrier properties of PPF. Furthermore, 
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from the gas permeability tests, PDMPF also presented 2.17 and 7.67 times lower CO2 and 

O2 gas barrier, respectively, than those observed for PET.57 

 

1.2.1.5. Main applications of FDCA-based homopolyesters  

Due to their interesting thermal and mechanical properties, FDCA-based homopolyesters 

could easily find applications in the most variable fields. For example, PEF as the renewable 

substitute of PET, and a high-performance engineering thermoplastic as well, had shown 

enhanced gas barrier and attractive thermal and mechanical properties, enabling a series of 

industrial applications, such as beverage packaging, films and fibers.48,102–107 In fact, in 2011 

Avantium107 in collaboration with Alpla, the Coca-Cola Company and Danone, announced 

the production of the first bio-based bottle entirely from PEF for soft drinks, water, alcoholic 

beverages, through the so-called YXY technology. Thus expanding PEF to the industrial 

scale (Figure 2.13). 

 

 

Figure 2.13. Synthesis of FDCA trough the YXY technology and the first PEF bottle 

(adapted from reference 107). 

 

Moreover, recently it was found that PEF it is a material highly suitable for rapid 3D printing 

with low resolution, and slow 3D printing with high resolution. Furthermore, the quality of 

the 3D printed objects was superior in terms of fusion of the layers and smoothness of the 

surface as compared to the standard PLA material.108 

PPF and PBF owning very similar thermal and mechanical properties to PPT and PBT, 

can find applications such as in packaging materials, and in injected products and 

fibers.57,61,62,109 Moreover, according to Tsanaktis et al.,65 PPeF, PHeF and PNF can also be 



 

Chapter II – The State of the Art 

34 

 

used for films, fibers and containers for beverages and water. Furthermore, PHF due to its 

mechanical properties and slow crystallization rates, can be used for produce cast polymeric 

parts.23 Also, PDeF, PDoF and PEGF could be interesting for applications where less rigid 

materials are needed.66,68,70 

In general terms, packaging seems to be a transversal application proposal for several 

homopolyesters by different authors.26,75,78,80–82 

 

1.2.1.6. Recyclability and degradability  

In terms of FDCA-based homopolyesters recycling, processes like chemical recycling 

(depolymerisation of polyesters through hydrolysis, methanolysis or glycolysis), as well as, 

mechanical recycling (re-introduction in extrusion process) are also an alternative to the 

waste management and consequent contribution to the development of circular economy. A 

patent from Furanix Technologies B.V.,12 described the PEF base catalysed 

depolymerisation mechanism thought hydrolysis and methanolysis (using sodium methoxide 

or 1,5,7-triazabicyclo[4.4.0]dec-5-ene), with DMFDC and FDCA as final products. Results 

showed a methanolysis rate for PEF much higher than for PET, i.e., after only 90 min, 52% 

of the initial PEF sample weight were recovery from methanol compared to only 2% of PET. 

Another interesting finding was that, when recycle streams of PET and PEF were mixed 

(with total PEF addition of 5% (w/w) into the re-extrusion process), no significant effect on 

the mechanical and physical properties of PET was observed.12 

Even in the context of recycling, it was demonstrated that PEF is an efficient material for 

3D printing, possessing optimal adhesion, thermoplasticity, lack of delamination and low 

heat shrinkage.108 Moreover, due to the high thermal stability and relatively low temperature 

of extrusion, PEF is an optimal candidate for recycling printed objects. Finally, authors also 

referred the capacity of PEF be recycled several times without noticeable loss of 3D printing 

characteristics. 

Moreover, information on the enzymatic hydrolysis of polyesters is of particular interest 

because enzymes are suitable biocatalysts for environmentally friendly degradability or 

recycling processes.110 In the case of FDCA-based homopolyesters, some studies on their 

enzymatic degradation, namely, trough enzymatic hydrolysis were reported.71,108,110–113 

In the case of PEF, its enzymatic hydrolysis was reported in several studies.110–112 In 

2016,110 enzymatic hydrolysis of amorphous PEF powders (Mn values of 6 000, 10 000 and 
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40 000 g/mol; crystallinity <1%), using the Thermobifida cellulosilytica cutinase was 

reported, observing the release of 2,5-furandicarboxylic acid (Table 2.3) and oligomers up 

to DPn ~ 4.  

 

Table 2.3. Results of the amount of FDCA released after enzymatic hydrolysis of different 

homopolyesters. 

Polyester 
Mn

 

(g mol-1) Đ 
Degree of crystallinity 

(%) 

Released FDCA 

(mmol L-1)a 

References 

PEF 

5 700 - < 1 5.7 ± 0.45 
110

 10 200 - < 1 10.2 ± 0.64 

13 000 - < 1 13.0 ± 1.18 

PEF 

18 000 1.6 < 1 
2.4 ± 0.04 (d< 180 μm) 

2.6 ± 0.12 (180 < d < 425 μm) 111 
55 000 1.9 46 

1.4 ± 0.28 (d< 180 μm) 

0.8 ± 0.14 (180 < d < 425 μm) 

1,2-PPF 14 100 2.5 < 1 7.5 ± 0.1 

71
 

PPF 21 000 2.8 < 1 2.0 ± 0.1 

PPeF 17 800 3.1 < 1 22.2 ± 2.9 

PHF 14 200 2.9 27 1.2 ± 0.04 

POF 9 3600 3.1 37 0.5 ± 0.02 

PNF 16 600 3.0 < 1 16.7 ± 1.3 

PDoF 11 100 2.5 30 3.3 ± 0.3 

PDEGF 32 900 3.7 < 1 42.2 ± 2.4 
a Amount of recovered FDCA after 72 h of enzyme-catalysed hydrolysis, average of three independent samples and 

the standard deviation among the triplicates. 

 

More recently, Weinberg et al.111 evaluated the enzymatic hydrolysis of PEF powders 

with different Mn´s, particle size and crystallinity, using the T. cellulosilytica cutinase under 

similar reaction conditions to those reported by Pellis et al.110. Contrary to the first study, 

materials with lower Mn and small particle sizes (d < 180 μm) were hydrolysed faster than 

those with higher molecular weights (Table 2.3). The enzymatic degradation of amorphous 

PEF films was also studied using Humicola insolens or T. cellulosilytica cutinases, showing 

that a 100% hydrolysis was achieved after only 72 h of incubation with H. insolens cutinase 

in a 1 M potassium phosphate buffer solution (pH=8) at 65 ºC. After 96 h, not only PEF 

films have been completely degraded, as well as >95% of the oligomers have been 

completely hydrolysed into monomers.111 

In a different study also from 2017, the same authors highlighted the different hydrolysis 

patterns of PEF and PET.112 The enzymatic hydrolysis of thin films with different 

crystallinity (0, 10 and 20%) was reported to be 1.7 times faster than that for PET. Once 
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again, H. insolens cutinase revealed to be more active on both PEF (and PET) films than T. 

cellulosilytica cutinase.  

Taking in consideration the other furanic-aliphatic homopolyesters besides PEF, 

Haernvall et al.71 studied the influence of the polyol structure on the enzymatic hydrolysis 

of furanic-aliphatic homopolyesters, such as 1,2-PPF, PPF, PPeF, PHF, POF, PNF, PDoF e 

PDEGF. T. cellulosilytica cutinase, in a 0.1 M potassium phosphate buffer (pH=7.0) at 50 

ºC during 72 h. These polyesters were almost amorphous, presenting a crystallinity values 

lower than 1%, except for PHF, POF and PDoF with crystallinities of 27, 37, and 30%, 

respectively. The main results have shown (Table 2.3) that T. cellulosilytica cutinase had 

hydrolysed all tested polyesters, with preference to those containing 1,5-pentanediol and 1,9-

nonanediol. Furthermore, from Table 2.3 it is also possible to observe that semi-crystalline 

homopolyesters, namely PEF, PHF, POF and PDoF were the less hydrolysable, especially 

in the case of amorphous PEF, in which the amount of FDCA released was almost the double. 

Moreover, it was clear that enzyme activity increased when the linear diol was replaced 

by a branched diol or ether derivatives (Table 2.3). In fact, the latter displayed the highest 

FDCA release amount among the tested diol-based polyesters (Table 2.3), showing that ether 

group strongly favour the degradation of this material. Indeed, the introduction of ethoxy 

units into the FDCA-based polyester chain doubled the hydrolytic activity. 

 

1.2.2. FDCA-based copolyesters 

As mentioned above, copolymerisation between FDCA and other comonomers, such as 

diols and diacids or hydroxyacids, could be a simple way to prepare materials with tuned 

properties,22,114,123–132,115,133–142,116,143–152,117,153–162,118,163,164,119–122 including, 

(bio)degradability. This has been accomplished by combining FDCA with EG, PD, BD, 

oligomeric poly(lactic acid) (PLA), succinic acid (SA), and/or adipic acid (AA), as 

comonomers (Figure 2.6). 

These copolymers have been prepared both through random or block copolymerisation. 

Although, random copolymerisation strategy is definitely the most used. 

In the next sub-sections the synthesis, thermal, mechanical and barrier properties of 

several important copolyesters will be discussed in detail. 
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1.2.2.1. Copolymerisation between FDCA and different diols  

Several studies were reported focusing the synthesis of FDCA-based copolyesters 

combining two different linear diols, such as among others EG, PD, BD, 2,2-dimethyl-1,3-

propanediol, as well as oligomeric ones like poly(ethylene glycol) (PEG), , in order to tune 

the thermal and/or mechanical properties of the final materials.22,70,123,114–121 

Gomes et al.22 reported the synthesis of poly(ethylene 2,5-furandicarboxylate-co-1,3-

propylene 2,5-furandicarboxylate) (PEF-co-PPF) with 24% of ethylene units via a two-step 

polytransesterification reaction in the presence of Sb2O3 as catalyst (Figure 2.14). 

 

 

Figure 2.14. Synthesis of PEF-co-PPF.22 

 

A semi-crystalline copolyester was obtained with Mn in the range of 14 100 g/mol and Đ 

equal to 2.27 and a Tg and Tm of 80 and 215 ºC, respectively, quite similar to those values 

typically reported for PEF. 

Sousa et al.115 prepared several random poly(1,4-butylene 2,5-furandicarboxylate)-co-

poly(poly(ethylene glycol) 2,5-furandicarboxylate) (PBF-co-PEGF) copolyesters with 

different BD and PEG1000 ratios, namely 80/20, 65/35, 50/50 and 34/66 (Figure 2.15 and 

Table 2.4). Semi-crystalline copolyesters were obtained. They had Mn values between 5 400 

and 37 000 g/mol, and Tg and Tm ranging from -35.4 to -43.1 ºC and 30.3 to 107.1 ºC, 

respectively. The ensuing materials will be referend as PBF-co-PEGF-80/20, -65/65, -50/50 

and -34/66, corresponding to their PBF/PEGF feed ratio, and same nomenclature will be 

adopted for all copolyesters that will be described forward. 
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Figure 2.15. Synthesis of random PBF-co-PEGF copolyesters.115 

 

Table 2.4. Main results obtained for copolyesters prepared with DMFDC, BD and 

PEG1000.
115 

Polyester BFreal 
a (mol %) Mn (g mol-1) Tg

b (oC)  Tm (oC) Td,on
c (oC)  Td,max (oC) 

PBF - - 71.1 171.1 351 381 

PBF-co-PEGF-80/20 86 -d -35.4 107.1 352  352 

PBF-co-PEGF-65/35 50 5 400 -36.8 30.3 370  370 

PBF-co-PEGF50/50 32 21 900 -35.4 37.9 380  380 

PBF-co-PEGF34/66 ≈ 0 37 0000 -43.1 41.1 374  374 

PEGF - 4 200 -35.8  41.7 364  364 

aReal molar percentage of PBF incorporated in the copolyester, determined by 1H NMR; bTg determined by 

DMTA at 1 Hz; c Td,on: Extrapolated onset temperature of weight loss step; dNot determined due to the solubility 

issues;  

 

This study showed a tendency to incorporate more 1,4-butylene 2,5-furandicarboxylate 

(BF) moieties than PEGF units in the polymer backbone, especially for higher BD/PEG 

ratios, suggesting a higher reactivity of BD compared to PEG.150 It was also found that the 

incorporation of PEG units into the backbone of the polymer clearly decreased both Tg and 

Tm, reaching values even lower than their related homopolyesters, however a gain in the 

thermal stability was noted. Nevertheless, PBF-co-PEGF-80/20 showed to have a segmented 

behaviour, displaying a Tg associated to the amorphous soft PEGF segment and a high Tm 

related with crystalline PBF units. 

Moreover, other copolymers were prepared also incorporating EG, PD and BD but also 

rigid aliphatic comonomers in order to improve the thermal and mechanical properties of the 

ensuing materials.116,117 
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For example, in Figure 2.16 is represented the synthesis of PEF copolyesters 

incorporating 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) as comonomer, and Table 

2.5 summarises the main results obtained for all copolyesters synthesised in these 

studies.116,117 

 

 

Figure 2.16. Synthesis of poly(ethylene glycol 2,5-furandicarboxylate)-co-poly(2,2,4,4-

tetramethyl-1,3-cyclobutylene 2,5-furandicarboxylate) (PEF-co-PCBDOF).116,117 

 

From Table 2.5 is possible to observe that the resulting copolyesters revealed some loss 

of crystallinity compared to PEF, PPF and PBF, since only Tg was displayed in their DSC 

traces, with the only exception being PBF-co-PCBDOF-10 that presented both Tg and Tm.  

But, the incorporation of PCBDOF units does not affected the thermal stability of the 

ensuing copolyesters, showing values close to those of PEF, PPF and PBF homopolyesters 

(Table 2.5). As expected, an increase in the Young’s modulus and tensile strength was 

observed with the CBDO content increase, attributed to the higher rigidity of PCBDOF unit. 

The same tendency was observed in terms of barrier properties, showing a slight increase in 

the O2 and CO2 permeabilities for higher content of CBDO, however still much lower than 

PET, PPT and PBT.116,117 

Several other studies reported the synthesis of poly(ethylene glycol 2,5-

furandicarboxylate)-co-poly(1,4-cyclohexylenedimethylene 2,5-furandicarboxylate) (PEF-

co-PCF) copolyesters from DMFDC, EG and different CDHM isomer ratios, via a two-step 

bulk polytransesterification approach (Figure 2.17) to improve the mechanical properties of 

PEF.118–120 
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Table 2.5. Composition, thermal, mechanical and barrier properties of CBDO-based 

copolyesters.116,117 

Polyester 
CBDOreal

a 

(mol%) 

Mη
b 

(g mol-1) 

Tg 

(oC) 

Tm 

(oC) 

Td,5% 

(oC) 

E 

(MPa) 

σm 

(MPa) 

Ԑb 

(%) 

O2
d 

(barrer) 

CO2
d

 

(barrer) 

PEF - 69 000 87.0 211.9 373 2 800 85 5 0.011 0.010 

PEF-co-PCBDOF-96/4 3.6  88.9 - c 372 3 000 95 6 - - 

PEF-co-PCBDOF-90/10 10.3 56 000 90.9 - c 368 3 100 97 6 0.013 0.019 

PEF-co-PCBDOF-85/15 15.4  92.1 - c 365 3 400 97 5 - - 

PEF-co-PCBDOF-82/18 18.2 51 000 91.1 - c 369 3 300 98 4 0.028 0.059 

PEF-co-PCBDOF-77/23 22.7  94.2 - c 364 3 500 98 4 0.028 0.059 

PPF - 65 000 55.5 173.6 367 2 700 53 50 0.09 0.016 

PPF-co- PCBDOF-90/10 9.8 71 000 61.1 - c 370 2 750 63 56 0.010 0.018 

PPF-co- PCBDOF-82/18 17.8 53 000 63.5 - c 361 2 800 78 30 0.036 0.020 

PBF - 76 000 39.0 168.6 367 2 000 62 290 0.018 0.018 

PBF-co- PCBDOF-90/10 9.6 74 000 42.5 154.4 368 2 100 72 274 0.025 0.027 

PBF-co- PCBDOF-82/18 17.9 69 000 43.5 - c 365 2 200 80 220 0.042 0.055 

a Real mol percentage of CBDO incorporated on the copolyester, determined by 1H NMR; b Viscosity average molecular 

weight (Mη) calculated using Mark–Houwink equation; c Not determinate; d Oxygen and carbon dioxide permeability 

coefficient, at 30 °C and 0.1001 MPa (1 barrer= 10-10 cm3 cm/cm2·s·cm Hg). 
 

 

 

Figure 2.17. Representative synthesis of PEF-co-PCF copolyesters from DMFD, EG and 

CHDM with different trans/cis isomers.118–120 

 

The influence on properties of the CHDM/EG ratio was assessed (Table 2.6).118–120 Hong 

et al.118 reported the synthesis of PEF-co-PCF (75/25, 50/50, 30/70), but with a non-specified 

ratio of CHDM isomers.  
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Table 2.6. Main results from molecular and thermal characterisation of PEF-co-PCF copolyesters.118–120 

Polyester 
cis/trans CHDMreal

a 

(mol%) 

Mn × 103 

(g mol-1) 

Tg 

(oC) 

Tm 

(oC) 

Td,5% 

(oC) 

E 

(MPa) 

σm 

(MPa) 

Ԑb 

(%) 

O2
c 

(barrer) 

CO2
c
 

(barrer) 
Ref. 

PEF  - 33.7 87.0 211.9 372 – 383 2 800 – 3 702 73 – 85 1 – 5 0.011 0.010 118,119 

PEF-co-PCF-85/15 

d 

15.1 29.6 84.9 - 369 2 300 75 8 - - 

119 
PEF-co-PCF-68/32 32.0 43.2 83.8 - 367 2 200 71 50 0.014 0.012 

PEF-co-PCF-41/59 59.2 51.6 81.7 206.5 368 1 740 59 186 0.017 0.027 

PEF-co-PCF-24/76 75.9 34.4 80.6 225.4 365 1 760 63 155 - - 

PEF-co-PCF-75/25 

70/30 

25.8 29.3 82.0 - - - - - - - 

118 PEF-co-PCF-50/50 51.0 32.0 80.0 - - 2 763  20 - - 

PEF-co-PCF-30/70 81.6 27.6 81.0 239.0 - 2 317  79   

PEF-co-PCF-50/50 

90/10 10.4b 27.2 - 189.1 380 1 700 52 155 0.026 0.054 

120 

75/25 24.9 b 33.2 - - 383 1 780 65 200 - - 

60/40 39.8 b 40.1 - 195.1 386 1 810 67 195 - - 

45/55 55.3 b 30.2 78.9 214.9 387 1 830 73 190 0.014 0.026 

32/68 67.8 b 48.0 82.5 226.8 389 1 850 75 175 - - 

15/85 85.1 b 44.6 - 250.7 390 1 880 74 160 - - 

2/98 97.7 b 48.4 - 252.3 391 1 900 80 105 0.009 0.019 

PCF  100 18.0 – 29.2 79.5 – 84.0 263 – 268 ~ 370  2 100 – 2 195 56 – 62 18 – 180 - - 118,119 
a Real mol percentage of CHDM incorporated on the copolyester, determined by 1H NMR b Real mol percentage of trans-CHDM incorporated on the copolyester, determined by 1H NMR c 

Oxygen and carbon dioxide permeability coefficient, at 30 °C and 0.1001 MPa (1 barrer= 10-10 cm3 cm/cm2·s·cm Hg). d Not determinate. 
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Also Wang et al.119 prepared a series of PEF-co-PCF (85/15, 64/32, 41/59, 24/76) but 

using a CHDM cis/trans isomers ratio of 70/39. Copolyesters with Mn values between 27 

600 and 51 600 g/mol were obtained, and showed that they were thermally stable up to 369ºC 

(Table 2.6). 

Additionally, in a very interesting study the influence of the ratio on the final thermal and 

mechanical properties was also evaluated (Table 2.6).120 The ratio of CHDM and EG was 

keep constant and equal to 1, and the trans/cis ratio varied from 10/90 to 98/2 mol% in the 

feed. PEF-co-PCF copolyesters with high molecular weights and enhanced thermal stability 

were obtained (Table 2.6). In addition, Tg and Tm increased significantly with the increasing 

content of trans-CHDM, revealing that this isomer impairs higher rigidity but also ability to 

crystallise to the related copolyesters, compare to cis isomer. Once again, mechanical 

properties reflected the increasing of the rigidity of the polymer chain, presenting increasing 

Young’s modulus and tensile strength values with the incorporation of more trans-CHDM 

segments of PEF-co-PCF polymer chains, although the Ԑb followed an opposite trend. 

The copolymerisation with CHDM leaded to polymers with increased permeability to O2 

and CO2, compared to e.g. PEF.118,119 However, a decrease was noted with the incorporation 

of 98 % of trans-CHDM, suggesting that tuning cis/trans-CHDM ratio could lead to an even 

better gas barrier properties. 

Similar to the homopolyesters, also copolyesters development studies addressed the 

possibility of improving the thermal properties, by using isosorbide diol monomers in 

copolymerisation reactions. In this vein, Sousa et al.70 proposed the modification of PEGF 

homopolyesters with isosorbide, through direct solution polytransesterification, of FDCDCl, 

isosorbide and PEG with molecular weight of 2 000 g/mol (Figure 2.18). 

 

 

Figure 2.18. Synthetic route to prepare PEGF-co-PIsF copolyesters.70 

 

The diols ratio in the feed was equal to 1, and a poly(poly(ethylene glycol) 2,5-

furandicarboxylate)-co-poly(isosorbide 2,5-furandicarboxylate) (PEGF-co-PIsF) 
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copolyester with Mn and Đ of 11 000 g/mol and 1.1, respectively, was obtained. Moreover, 

it was found that the real incorporation of isosorbide into the copolyester backbone was 

much higher than PEG, resulting in a copolymer formed essentially with PIsF moieties with 

the incorporation of some PEGF moities (PIsF/PEGF ratio of 76/23).70 This polymer showed 

to be a thermally stable material (Td,5%= 352.2 ºC), and also constituted by different phase 

block segments, i.e., two distant Tg´s were observed, one associated to the PEGF soft 

segments and the other to the PIsF rigid segments (-26.5 and 168.7 ºC, respectively). 

The incorporation of two cyclic diols in the same copolymer was only performed by 

Kasmi et al.123 (Figure 2.19) where CHDM and isosorbide were incorporated in different 

proportions, in order to modify the crystallinity of the resulting polymers, as well as tuning 

their thermal properties. 

 

 

Figure 2.19. Synthesis of PCF-co-PIsF from DMFDC, CHDM and isosorbide.123 

 

The resulting random PCF-co-PIsF presented molar composition in agreement with the 

corresponding feed ratios (Table 2.7); and Tg and Tm ranging from 75.3 to 103.5 ºC and 219.7 

to 257.2 ºC, respectively. 

 

Table 2.7. Main results from molecular and thermal properties of PCF-co-PIsF.123 

Polyester 
CHDMreal

a 

(mol%) 

Tg 

(oC) 

Tm 

(oC) 

Td,5% 

(oC) 
Ref. 

PIsF 100 157 – 180 - 350.0 11,22,73 

PCF-co-PIsF-5/95 95.6 75.3 257.2 372.4  

PCF -co-PIsF-10/90 88.7 82.6 249.5 370.5  

PCF -co-PIsF-15/85 84.5 87.0 243.7 362.0  

PCF -co-PIsF-20/80 82.2 90.0 234.8 375.0  

PCF -co-PIsF-30/70 74.7 97.8 219.7 366.1  

PCF -co-PIsF-40/60 64.9 103.5 - 362.8  

PCF 100 76.9 264.5 379.7 123 
a Real mol percentage of CHDM incorporated on the copolyester, determined by 
1H NMR. 
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Furthermore, increasing the isosorbide content, the crystallinity and thermal stability was 

directly affected, i.e., Tg strongly increased, however the Tm and Td,5% decreases, which is in 

accordance with the increase of rigid PIsF amorphous units that inhibit the mobility of 

molecular chains, as well as the crystallisation ability of the resulting materials. These results 

were corroborated by WAXD diffractograms, where peaks became less sharp with the 

introduction of the isosorbide content along the macromolecular chains. In fact, PCF-co-

PisF-40/60 is a completely amorphous copolyesters, displaying an amorphous halo in its 

diffractogram.123 

With the respect of their thermal stability, PCF-co-PIsF were found to be thermally stable 

up to 375 ºC (Table 2.7). However, these values were slightly lower than PCF 

homopolyester, yet still higher than that reported in the literature for PIsF.11,22 

In conclusion, the improved thermal stability and broad working window of PCF-co-

PIsFs ensure their processability at high temperatures, turning it into a suitable candidate for 

injection moulding applications, in these properties respect. 

 

1.2.2.2. Copolymerisation between FDCA and different aliphatic diacids and 

hydroxy-acids 

As mentioned above the copolymerisation of FDCA with aliphatic diacids or hydroxy-

acids, namely SA, AA, dodecanoic acid (DA), diglycolic acid (DGA) and PLA, was also 

considered in several studies aiming at obtaining materials with well-defined thermal, 

mechanical properties and resulting in materials with some degree of 

degradability.124,125,134,135,137–142,126–133 Similar to FDCA-based homopolyesters, copolyesters 

synthesis was typically performed through the chemical two-step bulk 

polytransesterification. 

Poly(ethylene succinate) (PES) is a commercial homopolyester with excellent 

processability and biodegradability, which finds a wide variety of applications.153 In order 

to improve the biodegradability of PEF, Yu et al.,124 described the synthesis of poly(ethylene 

2,5-furandicarboxylate-co-ethylene succinate) (PEF-co-PES), via the two-step bulk 

polytransesterification reaction, using FDCA, SA, an excess of EG and Ti(OBu)4 as catalyst 

(Figure 2.20).  
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Figure 2.20. Two-step polytransesterification of FDCA,SA and EG.124 

 

In general, PEF-co-PES were obtained as random copolyesters, incorporating 12-91 

mol% of ethylene 2,5-furandicarboxylate moieties (EF) in their backbone structures, and 

possessing Mn values ranging from 25 600 to 57 400 g/mol (Table 2.8). These copolyesters 

only showed crystalline behaviour when EF content was lower than 10 mol% or higher than 

70 mol%.  

 

Table 2.8. Most relevant physical properties of PEF-co-PES.124 

(co)Polyester EF/ESa Mn
 × 104 (g mol-1) Tg (oC) Tm (oC) 

PES 0/100 2.48 -10 115 

PEF-co-PES-10/90 12/88 4.12 - 72 

PEF-co-PES-30/70 33/67 5.74 21.93 - 

PEF-co-PES-50/50 52/48 4.25 32.36 - 

PEF-co-PES-70/30 74/26 3.93 - 146 

PEF-co-PES-90/10 91/9 2.56 - 173 

PEF 100/0 0.5 – 31.0 71 – 90 205 – 225 
a Molar ratio of EF and ES in feed. 

 

These modified PEF copolymers, showed thermal properties similar to those of their 

petrochemical counterparts, poly(ethylene terephthalate-co-ethylene succinate) (PET-co-
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PES).154 The authors also refereed that PEF-co-PES can be degraded under specific 

conditions, however without presenting any specific details. 

In the same perspective, poly(propylene furandicarboxylate-co-propylene succinate) 

(PPF-co-PPS) were prepared from DMFDC or FDCA, PD and SA.126,127 These copolyesters 

were also random materials, and they had high Mn, ranging from 39 600 to 81 600 g/mol 

(Table 2.9). 

 

Table 2.9. Most relevant physical and barrier properties of PPF-co-PPS copolyesters. 

(co)Polyester 
Mn  × 104 

(g mol-1) 

Tg 

(ºC) 

Td,5% 

(ºC) 

σm 

(MPa) 

E 

(MPa) 

Ԑb 

(%) 

O2
a 

(barrer) 

CO2
 b 

(barrer) 

H2Oc 

(g·cm/cm2·s·Pa) 

Ref. 

PPF 3.96 57.3 372 98.5 2 600 5 0.006 0.06 1.39*10-14 

126 

PPF-co-PPS-90/10 4.89 47.7 378 87.3 2 374 6 0.0072 0.07 3.52*10-14 

PPF-co-PPS-80/20 4.96 28.9 373 48.1 1 237 196 0.018 0.27 4.46*10-14 

PPF-co-PPS-70/30 5.02 28.7 370 14.0 200 500 0.023 0.30 4.93*10-14 

PPF-co-PPS-60/40 4.93 17.0 369 4.4 20 687 0.025 0.37 5.78*10-14 

PPF-co-PPS-50/50 6.83 8.8 366 2.9 12 1 255 0.027 0.57 6.37*10-14 

PPF-co-PPS-50/50 1.53 -7.2 323 - - - - - - 
127 

PPF-co-PPS-40/60 7.66 -0.2 370 0.4 7 1 485 0.04 0.60 9.37*10-14 

126 

PPF-co-PPS-30/70 7.63 -8.3 372 0.3 4 1 590 - - - 

PPF-co-PPS-20/80 7.52 -16.1 367 0.2 3 1 700 - - - 

PPF-co-PPS-10/90 8.16 -24.6 366 0.2 1 1 730 - - - 

PPS 6.28 -30.8 356 4.6 211 3 - - - 
a Oxygen permeability coefficient, at 23 °C, 50% relative humidity and 0.1001 MPa. 1 barrer= 10-10 cm3 cm/cm2·s·cm Hg. 
b Carbon dioxide permeability coefficient, at 23 °C, 50% relative humidity and 0.1001 MPa; c Water vapour transmission 

rate, at 38 °C, 90% relative humidity. 

 

In addition, PPF-co-PPS presented a decrease in the Tg with the PS content increasing, 

related to the incorporation of more soft moieties. It was also observed that Young´s modulus 

and tensile strength, strongly decreased with the increasing of PS content, and the elongation 

at break increased up to 1 700%.126 

It is worth to mention that the gas permeability of PPF-co-PPS-90/10 was close to that of 

PPF (Table 2.9), but for lower PF content, a decrease in the gas barrier was noted, however 

still showing superior properties than those of PBAT (permeability to O2 and CO2 of 0.76 

and 5.9 barrer, respectively),126 These gas barrier results could be an advantage for food 

packaging and agricultural films applications. 

PBF, as described before, is an interesting linear furanic-aliphatic polyester, however 

possessing low biodegradability when compared with other aliphatic renewable polyesters 

such as poly(butylene succinate) (PBS), and poly(butylene adipate) (PBA). 
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Copolymerisation with SA and/or AA and BD can be a simple method to tune 

biodegradability of PBF, and at same time maintaining its thermal and mechanical 

properties, as noted for other FDCA-based polymers.128–135 

Poly(butylene furandicarboxylate-co-butylene succinate) (PBF-co-PBS) and 

poly(butylene furandicarboxylate-co-butylene adipate) (PBF-co-PBA) copolyesters were 

usually prepared by the two-step polytransesterification approach of FDCA, SA and/or AA 

and BD, using Ti(OBu)4 or Zr(OBu)4 as catalysts. Random copolyesters with Mn values 

ranging between 15 700-85 700 g/mol and 26 400-68 700 g/mol to (PBF-co-PBS) and (PBF-

co-PBA) (Table 2.10) were obtained, respectively. 

 

Table 2.10. Most relevant physical properties of PBF-co-PBS and PBF-co-PBA. 

(co)Polyester 
Mn × 104 

(g mol-1) 

Tg 

(ºC) 

Tm 

(ºC) 

Td,5% 

(ºC) 

σm 

(MPa) 

E 

(MPa) 

Ԑb 

(%) 
Ref. 

PBF 0.12 – 23.21 25 – 39 163 – 180 304 – 370 68 1 100 – 1 900 3 – 284 128,129,131 

PBF-co-PBS-5/95 5.82 -31 111 - 14 172 174 128 

PBF-co-PBS-10/90 2.21 – 8.35 -27.6 – -25.0 102 – 105 339 20 – 77 20 – 372  160 – 1 027 128,129,131 

PBF-co-PBS-20/80 1.99 – 6.17 -24.2 – -20.0 90 – 93.1 342 20 – 115 21 – 550 320 – 1 423 128,129 

PBF-co-PBS-30/70 2.21 -17.9 71.0 344 -b -b 580 129 

PBF-co-PBS-40/60 2.90 – 7.83 -10.5 57.1 – 70.7 349 -b -b 660 129,132 

PBF-co-PBS-45/55 8.27 - 73.1 - 56 64 758 132 

PBF-co-PBS-50/50 1.85 – 8.57 -3.5 75.5 – 85.6 344 46 99 758 129,132 

PBF-co-PBS-55/45 7.94 - 96.8 - 49 167 706 132 

PBF-co-PBS-60/40 0.13 – 4.08 -21.0 – 6.5 54 – 112.0 345 27 300 434 128,129,132 

PBF-co-PBS-70/30 2.2100 14.6 131.0 339 -b -b -b 129 

PBF-co-PBS-80/20 1.57 22.0 147.0 347 -b -b -b 129 

PBF-co-PBS-90/10 -a 30.5 159.0 345 -b -b -b 129 

PBS 0.77 – 8.42 -33 – -36 114 404 – 423 44 432 303 131,155,156 

PBF-co-PBA-10/90 3.30 –  4.13 -53.2 49 – 55 342 12 – 17 110 – 122 748 –759 130,135 

PBF-co-PBA-20/80 3.39 – 5.70 -48.1 – -44 27 – 30 369 11 55 976 130,135 

PBF-co-PBA-30/70 2.64 – 4.10 -38.0 50 370 2.6 0.1 1 850 130,135 

PBF-co-PBA-40/60 3.23 – 5.18 -30.2 – -28.0 47 – 54 382 9 – 28 2 – 34 613 – 1 521 130,132,135 

PBF-co-PBA-45/65 6.87 - 74 - 28 47 896 132 

PBF-co-PBA-50/50 2.85 – 5.04 -20 70 – 87 377 15 – 35 10 – 73 365 – 1 040 130,132,135 

PBF-co-PBA-55/75 - - 99 - 26 117 800 132 

PBF-co-PBA-60/40 4.30 – 5.06 -11 108 –112 369 26 – 43 56 – 185 418 – 798 132,135 

PBF-co-PBA-70/30 3.50 -1 132 386 35 44 469 135 

PBF-co-PBS-75/25 3.13 7 134 - 30 76 425 130 

PBF-co-PBA-80/20 3.00 10.6 146 388 42 51 407 135 

PBF-co-PBA-90/10 - c 23.3 156 382 36 111 304 135 

PBA 1.70 – 6.20 -60 – -78 58 – 60 340 – 404 15 – 139 162 – 168 463 – 680 
128–

130,135,155–160 

a Not determinate because of the insolubility in chloroform. b Not determinated. c Not measured due to the limitation of the 

instrument used. 
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From Table 2.10 it is possible to conclude that with the increasing of BS or BA content, 

the Tg clearly decreased, mostly due to the incorporation of soft aliphatic moieties in higher 

quantities. Similar trend was also noted in the Tm, but not so evident. 

Further, these copolyesters were found to be thermally stable up to 388 ºC, possessing 

better thermal stability than PBF (Td,5% between 304 to 370 ºC) (Table 2.10). 

Both, PBF-co-PBS and PBF-co-PBA copolymers exhibited lower values of E and σm than 

PBF, but they have higher elongation at break (Table 2.10). Furthermore, these polyesters 

have also presented enhanced biodegradability (soil degradation tests), even when only 10 

mol% of BF moieties were incorporated, and in some cases even higher than the 

corresponding homopolyesters.128,130,132,136,165 

In terms of their applications, both PBF-co-PBS and PBF-co-PBA copolymers were 

proposed to find wide applications as thermoplastics, bottles, packaging and films, as well 

as elastomers or impact modifiers simply by tuning the relative amount of BF units content 

introduced.128–130,132,133 Jacquel et al.138 patented in 2013, PBF-co-PBS copolyesters for 

films and packaging applications. 

Recently, Soccio et al.140 reported the synthesis of poly(butylene 2,5-furandicarboxylate)-

co-poly(butylene diglycolate) (PBF-co-PBDG), via bulk polytransesterification method 

(Figure 2.21). In this study, the BF content was comprised from 60 to 90 mol% in the feed, 

and the ensuing copolyesters presented semi-crystalline nature (Table 2.11). 

 

 

Figure 2.21. Synthesis of PBF-co-PBDG via bulk polytransesterification reaction.140 

 

PBF-co-PBDG copolymers have shown a good thermal stability, with maximum 

degradation temperatures between 380 to 388 ºC, even higher than PBF homopolymer 

(Td,max=366 ºC). 
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Table 2.11. Main thermal and mechanical results of PBF-co-PBDG.140 

(co)Polyester 
Tg 

(ºC) 

Tm 

(ºC) 

Td,max 

(ºC) 

σm 

(MPa) 

E 

(MPa) 

Ԑb 

(%) 

PBF 35 164 366 34 1 283 102 

PBF-co-PBDG-90/10 26 153 383 10 373 419 

PBF-co-PBDG-80/20 19 140 380 26 688 241 

PBF-co-PBDG-70/30 11 128 382 18 353 415 

PBF-co-PBDG-60/40 6 106 388 9 130 414 

 

As already pointed out before for other copolymers, the thermal features were quite 

dependent of the BF/BDG ratio, i.e., both Tg and Tm decreased with the increasing of BDG 

segments incorporated into the polymer chains. BDG units provide softer polymer 

consequently decreasing the Tg, and at same time disrupting the crystalline ability of PBF 

due to high random degree, leading to the formation of less perfect crystals decreasing the 

Tm. In addition, with introduction of more BDG segments into the PBF chain, a progressive 

decrease of the Young’s modulus and tensile strength was observed, as well as also due to 

the incorporation of more soft segments, and consequently increasing the elongation at 

break. Further, by increasing the BDG unit content, there is a modest increase in the gas 

permeability values consequent to the decrease of the glass transition temperature, which 

attributed higher flexibility to the polymer chains. 

The copolymerisation of FDCA with hydroxy-acids, namely oligomeric PLA, has also 

been investigated in two studies.141,142 Matos et al.141 performed the synthesis of 

poly(ethylene 2,5-furandicarboxylate)-co-poly(lactic acid) (PEF-co-PLA), through the 

copolymerisation of BHEFDC and PLA (Mn ≈ 5 000 g/mol), in the presence of Sb2O3 or 

SnCl2.2H2O as catalyst (Figure 2.22). Wu et al.142 also reported the synthesis of this 

copolymer but using Ti(OBu)4 as catalyst, and PLA with Mn ≈ 2 900 g/mol. 

The results obtained showed that Ti(OBu)4 was a better catalyst, since polymers with 

much higher molecular weights were achieved. 

 

 

Figure 2.22. Polytransesterification reaction between BHEFDC and PLA.141,142 
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However, in both approaches141,142 the obtained copolyesters presented a random 

structure and were essentially amorphous, with high thermal stability (Td > 282 ºC), and Tg’s 

that can be very close to PEF (Table 2.12). 

 

Table 2.12. Main results obtained for PEF-co-PLA.141,142 

(co)Polyester 
Mn × 104 

(g mol-1) 

Tg 

(ºC) 

Tm 

(ºC) 

Td,5% 

(ºC) 

Ref. 

PEF 2.21 80 - - 142 

PEF-co-PLA-73/27 0.69 76.4 - 324 

141 
PEF-co-PLA-54/46 0.70 67.5 - 301 

PEF-co-PLA-23/77 0.73 69.2 - 320 

PEF-co-PLA-7/93 0.83 25.0 119.6 230 

PEF-co-PLA-20/80 2.16 68 - 282 
142 PEF-co-PLA-30/70 2.64 70 - 287 

PEF-co-PLA-40/60 6.47 79 - 300 

PLLA 0.29 – 0.50 54 151.2 257 141,142 

 

The degradability of these copolyesters was investigated through hydrolytic and tests 

have revealed that these polyesters possess enhanced hydrolytic degradability, even higher 

than the corresponding PLA homopolyester (Figure 2.23). 

 

 

Figure 2.23. Variation of the weight loss along with the hydrolytic degradation time 

(adapted from reference 141). 
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1.2.3. FDCA-based copolyesters and their biodegradability 

Biodegradability can be defined as the ability of a given material to be degraded under 

defined conditions, safely and relatively quickly, that after can disappear into the 

environment.161  

In Europe, to be considered as (bio)degradable, and according to EN 13432 or EN 14995 

standards,137 a material has to degrade biologically to at least 90 %, in less than 180 days. 

Moreover, biodegradable polyesters can decompose in the environment because of the 

characteristics of their main-chain structure and to certain extent of hydrophilicity and 

crystallinity.162  

In fact, a balance between the hydrophilic/hydrophobic of polyesters molecules seems to 

be crucial for the enzyme to bind to the substrate and the subsequent hydrolytic action of the 

enzyme. Furthermore, lipases, the most used estereases for hydrolytic degradation, have the 

ability to hydrolyse aliphatic polyesters in contrast to aromatic polyesters because the 

flexibility of the main chain and the hydrophilicity of aliphatic polyesters.162 On the contrary, 

almost all aromatic polyesters tend to be non-biodegradable essentially due to their rigid 

structures and hydrophobicity, that prevent the entrance of the water to hydrolyse the ester 

linkages.163 

Some studies have shown that copolymerisation of FDCA with aliphatic diacids or 

hydroxyacids can be used to achieve materials with some degree of biodegradability. 

125,130,136,139,141,142 Actually, the introduction of aliphatic ester moieties in the backbone of 

copolyesters have facilitated the chemical or enzymatic attack as well as the penetration of 

water to break the ester linkage.164 For example, PEF-co-PLA copolyesters prepared from 

FDCA and oligomeric lactic acid (PEF-co-PLA) have demonstrated enhanced soil 

degradability when compared with PEF.142 Soil degradation tests of these copolyesters 

displayed quite interesting results, since the copolyester with higher EF content still presents 

weight loss higher than 10% (Figure 2.24).142 
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Figure 2.24. Weight loss of copolyesters degradation in PBS (a) and soil (b) (adapted from 

reference 142). 

 

The biodegradation of PBF and PBF-co-PBDG copolymers was also evaluated through 

composting tests. Polyesters were incubated in compost for 21, 35 and 62 days, and the 

corresponding weight loss was measured (Figure 2.25). It was clear, that higher BDG content 

lead to higher weight losses, with the maximum weight loss value being observed for PBF-

co-PBGD-60/40 (40 %), while no significant changes in PBF weight were observed. 

 

 

Figure 2.25. Weight loss (%) for the samples under study at different incubation times 

(adapted from reference 140). 
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Moreover, copolyesters prepared from FDCA and aliphatic diacids, such as adipic and 

succinic acids, also have shown some biodegradability. In the case of PBF-co-PBA, just 

incorporating only 10 mol% of BF content a higher biodegradability was achieved, even 

when compared with PBA.130 For PBF-co-PBS copolyesters, compostability tests have 

revealed that all samples were biodegradable up to 90 % in less than 180 days, as required 

by the European Standard.128,165 A recent patent from Novamont136 reinforces these results, 

where 91.6 % of compostability was achieved for PBF-co-PBS just in 90 days. 

Copolymerisation between FDCA and aliphatic diacids and/or hydroxylacids had 

revealed to be an excellent approach to obtained very interesting materials with enhanced 

biodegradability. 
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2. Conclusions 

The synthesis of furanic-aliphatic FDCA-based homopolyesters has been intensively 

studied during the last few decades through several routes, resulting in polymers with 

enhanced thermal and mechanical properties, and/or degradability, depending on the 

monomers used. It is also noteworthy, that all materials described in this survey are almost 

bio-based renewable materials, possessing thermal and mechanical features quite similar and 

for some even better than those currently derived from petroleum.  

The synthesis of FDCA-based copolyesters was also performed using a myriad of linear, 

branched and cyclic diols, as well as, different diacids and hydroxyacids, leading to materials 

with tuneable properties and in some cases with enhanced biodegradability, which can open 

a wide variety of applications. 
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Abstract 

The search for new polymers from renewable origin is a sparkling field in polymer 

chemistry, especially those having promising properties, for example, in terms of their 

thermal performance. In this vein, in this study, an original renewable 2,5-furandicarboxylic 

acid-based cycloaliphatic homopolyester, poly(1,4-cyclohexylene 2,5-furandicarboxylate) 

(PCdF), is synthesised from dimethyl-2,5-furandicarboxylate and 1,4-cyclohexanediol. 

Poly(1,4-cyclohexanedimethylene 2,5-furandicarboxylate) is also prepared for comparison 

purposes, since it is the direct renewable substitute of poly(1,4-cyclohexanedimethylene 

terephthalate) and they are structurally related. The resulting homopolyesters are 

characterised in detail by using attenuated total reflectance Fourier transform infrared, 1H, 

13C and 2D NMR, X-ray and elemental analysis, and thermal properties are assessed by 

thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical 

thermal analysis. PCdF shows to have a semi-crystalline character, exhibiting an extremely 

high glass transition temperature around 175 ºC. Moreover, this polyester also shows to be 

a high thermally stable material with a degradation temperature of 380.0 ºC. 

 

Keywords: 1,4-cyclohexanedimethanol; 1,4-cyclohexanediol; 2,5-furandicarboxylic acid; 

enhanced thermal properties; furanic-cycloaliphatic polyesters. 

 

1. Introduction 

Polyesters, well-known as highly versatile materials, have a high importance in a broad 

range of commodity applications spanning from packaging plastics, typically for soft drinks, 

water, and alcoholic beverages as well as textiles; to films; sheeting; and resins for moulding 

up including sophisticated precision pieces for medical and electronic applications.1 

Poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) are the most 

applied thermoplastics with a wide range of applications, mostly due to their well-known 

good mechanical properties and excellent chemical resistance, as well as their electrical 

insulation properties.2 Furthermore, the fact that these polymers show a combination of high 

glass transition (Tg) and high melting temperatures (Tm) (75 and 250 ºC for PET, and 35 and 

225 ºC for PBT, respectively),3,4 enables them to maintain their shape and mechanical 
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properties at high temperatures, positioning them into a privileged position among all 

thermoplastic materials.5 Another relevant example, which had some commercial relevance 

as fibbers (Kodel fibres),1 is also based on terephthalic acid (TPA) but incorporating the rigid 

cycloaliphatic monomer, 1,4-cyclohexanedimethanol (CHDM). The ensuing poly(1,4-

cyclohexanedimethylene terephthalate) (PCT) is a high performance polyester with a Tm 

between 278-318 °C, much higher than that of PET or PBT.6 

Many other polyesters based on TPA have a spotlighted importance in polymer scene, 

however in recent years, concerns regarding fossil feedstock availability, price instability, as 

well as environmental issues associated with their massive consumption, CO2 emissions and 

improper disposal, lead to an increasing research activity to find sustainable and 

environmentally friendly alternatives, mainly using plant biomass as the primary raw 

material.7–10 In fact, within the biorefinery concept, biomass is expected to be efficiently 

converted (calling upon sustainable and environmentally friendly processes) into fuels, 

energy, chemicals and materials.11 In this context, 2,5-furandicarboxylic acid (FDCA), that 

can be easily obtained from hexoses, has been considered as one of the most important 

platform chemicals for a panoply of applications,8 among which polyester synthesis is 

probably one of the most promising.12 In fact, a significant number of FDCA-based materials 

have already been successfully synthesised, showing often similar properties to those of the 

TPA counterpart,13 and in the case of poly(ethylene 2,5-furandicarboxylate) (PEF) already 

produced at pilot scale. 

However, oppositely to the increasing number of FDCA-based polyesters using linear 

short-chain aliphatic alcohols,13,14,23–32,15,33,16–22 the studies involving cycloaliphatic 

monomers are scarce. In fact, only a few studies were dedicated to this specific domain, apart 

from the pioneering work of Moore and Kelly, in the late 1970’s,34,35 where the direct 

polycondensation of 2,5-furandicarbonyl dichloride with 2,5-bis(hydroxymethyl) 

tetrahydrofuran was reported. It was only several decades later that the synthesis of FDCA-

based homopolyesters with other cyclic diols, mainly 1,4:3,6-dianhydrohexitols was 

reported.2,36–40 Several other results have also been patented, focusing the synthesis or 

specific applications of FDCA-based polyesters, using dianhydrohexitols39,40 and other 

cyclic monomers, such as, dichloro-2,3-o-isopropylidene L-tartrate,41 1,4-

cyclohexanedimethanol42–44 or 2,2,4,4-tetramethylcyclobutane-1,3-diol,45 as well as 

combinations of both,46 with ethylene glycol47 or 1,4-butanediol.43 
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Recently, Sousa et al.48 reported the synthesis of FDCA-based copolymers incorporating 

isosorbide and different number-average molecular weight poly(ethylene glycol) (PEG200, 

PEG400 or PEG2000). The resulting materials have shown better or comparable Tg to their 

petro-based counterparts.  

In this vein, the incorporation of more rigid cycloaliphatic monomers into the polyesters 

backbone could be a very interesting approach to obtain materials with enhanced thermal 

and mechanical properties. To achieve this goal it is expected that the incorporation of 1,4-

cyclohexanediol (CHD) in FDCA-based polyesters could lead to materials with enhanced 

thermal properties and at same time with good processability. Thus, in this study poly(1,4-

cyclohexylene 2,5-furandicarboxylate) (PCdF) was synthesized using two approaches, 

namely the two-step polytransesterification procedure (transesterification followed by a 

polytransesterification), and the direct polycondensation reaction. Moreover, the synthesis 

of poly(1,4-cyclohexanedimethylene 2,5-furandicarboxylate) (PCF) was also performed for 

comparison, since this polyester is the direct furanic-renewable substitute of PCT and they 

are structurally related.  

Finally, the ensuing polyesters were fully characterized by size-exclusion 

chromatography (SEC), attenuated total reflectance Fourier transform infrared (ATR FTIR), 

1H, 13C and HSQC NMR, elemental analysis, as well as by thermogravimetric analysis 

(TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis 

(DMTA), and X-ray diffraction (XRD) techniques. 

 

2. Experimental 

2.1. Materials 

1,4-Cyclohexanediol (99.99 %, cis/trans 43/57), 1,4-cyclohexanedimethanol (99.99 %, 

cis/trans 46/54), zinc acetate (Zn(OAc)2, > 99.99 %), trifluoroacetic acid (TFA, 99 %), and 

deuterated trifluoroacetic acid, (TFA-d, 99 atom % D) were purchased from Sigma-Aldrich 

Chemicals Co. 2,5-Furandicarboxylic acid (FDCA, >98%) and 1,1,1,3,3,3-hexafluoro-2-

propanol (HFP, >99 %) were purchased from TCI Europe N.V. Concentrated hydrochloric 

acid (HCl, 37 %) was purchased from Panreac, and methanol, chloroform, dichloromethane, 

among other solvents (pro-analysis and HPLC grade) were purchased from Fisher Scientific. 
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Polystyrene standards with molecular weights between 4 290 and 66 350 Da were supplied 

by Polymer Laboratories. All chemicals were used as received, without further purification. 

 

2.2. Synthesis 

2.2.1. Synthesis of dimethyl 2,5-furandicarboxylate (DMFDC) 

The synthesis of DMFDC followed a previously reported procedure.14 Typically, 

DMFDC was prepared by reacting FDCA with an excess of methanol, under acidic 

conditions (HCl). The final product was isolated in 71 % yield as a white powder. FTIR 

(ν/cm-1): 3168 (=CH); 2965 (C-H); 1706 (C=O); 1578, 1522 (C=C); 1288 (C-O); 1024 (furan 

ring breathing); 969, 825, 757 (2,5-dibustituted furan ring). 1H NMR (300 MHz, CDCl3, δ/ 

ppm): 7.2 (s, H3/H4 furan ring); 3.9 (s, 2,5-COOCH3). 
13C NMR (75 MHz, CDCl3, δ/ppm): 

158 (2,5-C=O); 147 (C2/C5 furan ring); 118 (C3/C4 furan ring); 52 (2,5-COOCH3). 

 

2.2.2. Synthesis of 2,5-furandicarbonyl dichloride (FDCDCl) 

The synthesis of FDCDCl followed a previously reported procedure.37 Typically, 

FDCDCl was prepared in solution using FDCA (≈2 g) dissolved in dimethylformamide 

(DMF ≈50 μL) and an excess of SOCl2 (≈5 mL). The mixture was refluxed at 80 ºC for 6 h, 

with constant stirring. Subsequently, the excess of SOCl2 and DMF was removed under 

vacuum at room temperature and finally the pure dichloride monomer was isolated by 

vacuum sublimation, at ≈60 ºC. The final product was isolated in 60% yield as a white 

powder. FTIR (ν/cm-1): 3141, 3109 (=C-H); 1731 (C=O); 1046 (furan ring breathing); 977, 

829, 767 (2,5-dibustituted furan ring). 1H NMR (300 MHz, CDCl3, δ/ppm): 7.5 (s, H3/H4). 

13C NMR (75 MHz, CDCl3, δ/ppm): 156 (2,5-C=O); 149 (C2/C5); 123 (C3/C4). 

 

2.3. Melt polytransesterification reactions 

Reactions were carried out in bulk using DMFDC (5.45×10-3 mol) and an excess of either 

CHD or CHDM (1.5:1 diol to dimethyl ester), using ZnAc or TBT as catalysts (1 wt% 

relative to the total mass of monomers). The mixture was heated progressively from 110 to 

180 ºC during the course of the first 3 h under nitrogen atmosphere, and then up to 220 ºC 
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during 4 h, under vacuum (~10-3 mbar) with constant stirring. The reaction mixtures were 

dissolved in TFA (~20 mL), and then the polymers precipitated, by pouring into an excess 

of methanol (~1 L) to remove the catalyst, unreacted monomers and the soluble oligomers; 

the resulting PCdF or PCF were filtered, dried at 40 ºC, and weighted. 

 

2.4. Solution polycondensation reactions 

Reactions were carried out in solution following a previously reported procedure.37 

Typically, the dried diol monomer, either CHD or CHDM (1:1 diol to FDCDCl) dissolved 

in TCE (1.0 ml), were mixed with anhydrous pyridine (1.7 ml). Then, this mixture was 

allowed to cool down to about 0 ºC using an ice bath, and an equimolar amount of FDCDCl 

(ca. 1.81 mmol), dissolved in TCE (1.5 ml), was added dropwise, under nitrogen flux, and 

with vigorous stirring. The reaction was allowed to proceed at room temperature, while its 

viscosity increased progressively, during ≈ 7 h. The ensuing PCdF and PCF polymers were 

precipitated in an excess of cold methanol, filtrated, dried at 40 ºC, and finally weighted. 

 

2.5. Characterization methods 

SEC analyses of homopolyesters were performed on a home-made chromatographer 

equipped with a PL-EMD 960 light scattering detector, using a set of two PL HFIP columns 

(300 mm × 7.5 mm) and one PL HFIP gel guard column (50 mm × 7.5 mm), kept at 40 ºC, 

and previously calibrated with polystyrene standards in the range of 4 290 to 66 350 Da. A 

mixture of CH2Cl2/CHCl3/HFP (70/20/10 v/v/v%) was used as the mobile phase with a flow 

rate of 0.7 mL min-1. All polymers were dissolved using the mobile phase (~3 mg mL-1), and 

filtered through a 0.2 µm PTFE membranes before injection. 

Elemental analyses (C and H) were conducted in triplicate using a LECO TruSpec 

analyser. 

ATR FTIR spectra were obtained using a PARAGON 1000 Perkin-Elmer FTIR 

spectrometer equipped with a single-horizontal Golden Gate ATR cell. The spectra were 

recorded after 128 scans, at a resolution of 4 cm-1, within the range of 500–4000 cm-1.  

1H, 13C and HSQC (2D) NMR spectra were recorded in TFA-d using a Bruker AMX 300 

spectrometer, operating at 300 or 75 MHz, respectively. All chemical shifts (δ) are expressed 

as parts per million (ppm), downfield from tetramethylsilane (used as the internal standard).  
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TGA analyses were carried out with a Setaram SETSYS analyzer equipped with an 

alumina plate. Thermograms were recorded under a nitrogen flow of 20 mL min-1 and heated 

at a constant rate of 10 ºC min-1 from room temperature up to 800 ºC. Thermal decomposition 

temperatures were taken at the extrapolated onset temperature of weight loss step and at 

maximum decomposition temperatures from the heated samples (Td,on and Td, respectively).  

DSC thermograms were obtained with a DSC Q100 V9.9 Build 303 (Universal V4.5A) 

calorimeter from Texas Instruments, using aluminum DSC pans. Scans were carried out 

under nitrogen with a heating rate of 10 ºC min-1 in the temperature range from 0 to 300 ºC. 

Two heating/cooling cycles were repeated. Glass transitions (Tg) were determined using the 

midpoint approach (second heating trace), cold crystallization (Tcc) and melting temperatures 

(Tm) were determined as the maximum of the exothermic crystallization peak and the 

minimum of the melting endothermic peak during the second heating cycle, respectively. 

DMTA analyses were performed in a material pocket accessory with a Tritec 2000 DMA 

Triton, operating in the single cantilever mode. Tests were performed at 1 and 10 Hz and the 

temperature was varied from -90 to 250 ºC, at 2 ºC/min. Tg were determined as the maximum 

peak of tan δ, respectively.  

XRD measurements were performed using a Philips X’pert MPD diffractometer 

operating with CuKα radiation (λ = 1.5405980 Å) at 40 kV and 50 mA. Samples were 

scanned in the 2θ range of 5 to 50º, with a step size of 0.04º, and time per step of 50 s. 

 

3. Results and Discussion 

3.1. From PCdF synthesis to its structural characterization 

The new PCdF homopolyester was prepared by two distinct approaches, namely melt 

polyesterification approach (Sheme 1a), or direct polycondensation system (Scheme 1b)) 

(Table 3.1). In the former case the renewable-based DMFDC and the cycloaliphatic CHD 

(Scheme 1a)) reacted by applying the conventional two-step melt polyesterification 

approach,14 in the presence of TBT or ZnAc catalysts. These reactions were circumspectly 

conducted at relatively moderate temperatures, not exceeding 220 ºC, to avoid undesirable 

side reactions involving the furan moiety (e.g. decarboxylation reactions leading to color 

problem issues),12 or the secondary diol CHD decomposition (e.g. through elimination 

reactions). Reaction time did not exceed 7 hours for the same reasons. 
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Scheme 1. Synthesis of PCdF via two conventional polymerization approaches: a) bulk 

polytransesterification reaction, and b) solution polycondensation reaction. 

 

Table 3.1. Experimental data for all the polymerization reactions carried out in this study. 

Polyester Experimental conditions yield (%)a) Mw
b) Đc) 

PCdF1 melt polytransesterification; TBT 50 9 800 1.5 

PCdF2 melt polytransesterification; ZnAc 33 4 300 1.2 

PCdF3 solution polycondensation 43 4 300 1.2 

PCF1 melt polytransesterification; TBT 67 14 100 1.7 

PCF2 melt polytransesterification; ZnAc 57 11 400 1.7 

PCF3 solution polycondensation 62 12 100 1.7 
a) Related to the amount of polymer recovered after precipitation in methanol; b) weight-

average molecular weight (Mw), determined by SEC in DCM/CHCl3/HFP; c) Polidispersity 

index (Ð) determined by SEC in DCM/CHCl3/HFP. 

 

Direct solution polycondensation of FDCDCl and CHD (Scheme 1b)) was also performed 

at mild reaction conditions to assess their influence on the ensuing reaction products. 

Additionally, PCF, prepared in this case using CHDM, was also synthesized using similar 

approaches with the specific aim of providing a comparison point (Table 3.1). 

A priori the use of other synthetic approaches could be adopted, including an interesting 

one recently proposed,49 however the relatively mild reaction conditions would still have to 

be applied to avoid side-reaction (vide infra). 

The ensuing white PCdF and PCF homopolyesters were isolated, after a purification step 

to remove the catalyst, unreacted monomers, and low molecular weight soluble oligomers, 
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in isolation yields ranging from 33 to 67% (Table 3.1), being the highest values obtained for 

the melt polytransesterification approach using TBT as catalyst (50 and 67% for PCdF and 

PCF, respectively). However, both polyesters obtained with TBT as catalyst had weight 

average molecular weight values consistently higher than with the other synthetic conditions 

(e.g., around 9800 and 4300 for PCdF1 and PCdF2-3, respectively), and the Đ values varied 

between 1.5–1.7. Therefore, the following characterization results refer to the resulting 

products obtained from melt polyesterification reactions using TBT as catalyst, namely 

PCdF1 and PCF1, since they had shown the highest isolation yields and accordingly also the 

highest molecular weight values.  

Additionally, also in terms of weight-average molecular weights, PCF had always higher 

values than PCdF counterpart independent of the synthetic method adopted (e.g., 9800 and 

14 100 for PCdF1 and PCF1, respectively). This trend was already previously observed in 

the synthesis of other CHD-, CHDM-based polycondensates, due most probably to a higher 

chain stiffness of the CHD-related polymers.50 

The elemental composition of both homopolymers (Table 3.2) was verified by the 

elemental analysis of carbon (% C) and hydrogen (% H), while the oxygen content (% O) 

was assessed by difference to 100% of the former two. The experimental results obtained 

for both polyesters were found to be in agreement with the calculated elemental composition, 

excluding a possible presence of low molecular weight oligomers. 

 

Table 3.2. Elemental analysis results (%) of PCdF1 and PCF1. 

Polyester Element Calculated (%)  Experimental (%) 

PCdF1 

C 61.52 61.13 

H 4.31 4.25 

O 34.17 34.62 

PCF1 

C 60.31 61.33 

H 5.08 5.30 

O 34.61 33.37 

 

The ATR FTIR spectrum (Figure 3.1) of PCdF1 was found to be consistent with its 

expected macromolecular structure, exhibiting a very intense band near 1720 cm-1, arising 

from the C=O stretching vibration, typical of ester groups, and the C–O stretching vibration 

appeared around 1273 cm-1. No significant absorption in the OH stretching region was 
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detected, suggesting that the polymer had reached a plausibly reaction yield. Additionally, 

it was also observed two weak bands near 3150 and 3112 cm-1 arising from the stretching 

modes of the =C–H bond of the furanic heterocycle, as well as two weak bands near 2923 

and 2854 cm-1 assigned to the stretching modes of the C–H bond of cycloaliphatic methylene 

groups. Moreover, the typical vibration modes of 2,5-disubstituted furans were also observed 

near 983, 843, and 768 cm-1. The ATR FTIR spectrum of PCF1 (Figure 3.1) was consistent 

with the characteristic features of PCdF1 counterpart and also with previously published data 

for PCF.43 

 

 
Figure 3.1. ATR FTIR spectra of (a)PCdF1 and (b) PCF1 homopolyesters. 

 

The 1H and 13C NMR spectroscopic analyses have unambiguously confirmed the PCdF1 

and PCF1 polyesters’structure (Figure 3.2 a, b and Table 3.3).  

The 1H NMR spectrum of PCdF1 (Figure 3.2 a) displayed in the region of δ ≈ 7.7–4.8 

ppm (dashed square limits of Figure 3.2 a) the typical resonances of H-3 and H-4 of the furan 

moiety, in the vicinity of cis- and trans-isomers of the CHD moiety, at around 7.6 and 7.5 

ppm, respectively; and the resonances of 2,5-COOCH (H-1′) protons attributed to both cis- 

and trans-isomers of CHD at 5.5 ppm. 

 

4000 3500 3000 2500 2000 1500 1000 500

2,5-disubstituted ring C−O

 =O

 =CH

 C-H asym, sym

 (cm
-1

)

(a)

(b)



 

Chapter III – Improving the Thermal Properties of Poly(2,5-furandicarboxylate)s Using Cyclohexylene 

Moieties: A Comparative Study 

 

86 

 

 

Figure 3.2. 1H NMR spectra of a) PCdF1 and b) PCF1 in TFA-d. 

 

In the case of PCF1 polymer (Figure 3.2 b)) the resonances of CH protons (H-3 and H-4) 

from the furan ring were also observed at 7.2 ppm, but no distinguishable split related with 

cis- and trans- isomers of CHDM moiety was detected.  

Additionally, the spectrum of PCF1 displayed at 4.3 and 4.2 ppm the proton resonances 

of 2,5-COOCH2 (H-a) groups attributed to the trans- and cis-isomers, respectively. 

The 13C NMR spectra of PCdF1 and PCF1 were in accordance with their 1H NMR results 

in the above mentioned region, displaying in both cases the resonances assigned to the furan 

carbons C-2,5 and C-3,4 at 146.4 and 119.4 ppm, respectively, and the carbonyl carbons at 

160.5 ppm.  
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Table 3.3. Assignment of the 1H and 13C NMR chemical shifts relative to PCdF1 and PCF1. 

 PCdF1 PCF1 

Assignment 
1H 

δ [ ppm] 

13C 

δ [ ppm] 

1H 

δ [ ppm] 

13C 

δ [ ppm] 

3, 4 7.6, cis- 

7.5, trans- 

119.4 7.3, cis- and trans- 119.4 

2, 5 - 146.4 

 

- 146.4 

2,5-COO - 160.5 - 160.5 

 

(COOCH2) - - 4.4, cis- 

4.2, trans- 

71.5, trans- 

69.7, cis- 

1’ 5.5, cis- and 

trans- 

74.5, trans- 

73.9, cis- 

1.1, ax, trans- 

1.6, cis- 

36.4, trans- 

33.9, cis- 

2’ 
2.5-2.0, cis- and 

trans- 

26.5, 26.2, 

25.7, cis- and 

trans- 

1.7-2.1, ax, eq, trans- 

1.5, cis- 

 

27.7, trans- 

24.1, cis- 

3’ - - 

 

Moreover, the 1H NMR analysis of PCdF1 in the region comprising δ ≈ 2.5–1.5 ppm (line 

square limits of Figure 3.2 a) displayed the typical chemical shifts of methylene protons (H-

2′ and H-3′) of the cyclohexylene moiety; being, however, impossible to distinguish between 

the different chemical environments attributed to each protons of cis- and trans-isomers, 

mostly due to the overlap of their resonances. In the case of PCF1 (Figure 3.2 b)), the 

resonance of ax H-1′and eq and ax H-2′ are displayed at around 1.1 and 1.7–2.1 ppm, 

respectively, for the trans-isomer. Finally, with the only exception of the resonances 

displayed at 1.5 and 1.6 ppm, the remaining ones represent the typical resonances of trans-

isomer resulting polyester, so the formers are attributed to eq and ax H-1′ and H-2′ in the 

cis-isomer. These results were in agreement with previously reported results.43 

In terms of 13C NMR analysis of the latter region, PCdF1 spectrum displayed several 

resonances at 74.5, 73.9, 26.5, 26.2, and 25.7 ppm attributed to the COOCH and methylenic 

carbons (C-1′, C-2′, and C-3′) of the cyclohexylene moiety in the cis- and trans-isomers 

(Table 3.3). 

For PCF1 polyester the resonances of COOCH2, methinic and also methylenic carbons 

(a, C-1′ and C-2′) of the cyclohexylene moiety were displayed at 71.5, 69.7, 36.4, 33.9, 27.7, 

and 24.1 in the trans- and cis-isomer, respectively (Table 3.3). Furthermore, the NMR results 

of PCdF1 were also corroborated with the 2D HSQC NMR analysis (Figure 3.3), showing 

clearly the overlapping of the proton resonances in the region of 2.0–2.5 ppm. 
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Figure 3.3. 2D HSQC NMR spectrum of PCdF1 in TFA-d. 

 

3.1.1. Cis-/Trans-1,4-Cyclohexanediol isomers ratio assessment 

A deeper analysis of PCdF1 1H NMR spectrum allowed assessing the ratio between the 

cis- and trans-isomers in the polyester backbone by using the furanic H-3 and H-4 

resonances. This ratio was estimated to be 25.8/79.3, instead of 43/57 as the starting feed 

ratio used, showing that the trans-isomer is clearly more reactive than the cis-counterpart in 

this polymerization reaction conditions. The modest isolation yields are most plausibly 

related with this fact. However, in the case of PCF1 polyester (not determined before)43 the 

cis/trans ratio was equal to 39.7/60.3 which is relatively closer to the starting monomers feed 

ratio (46/54). 

 

3.2. Thermal behavior 

The TGA thermograms of PCdF1 (Table 3.4 and Figure 3.4) showed that this polyester 

is thermally stable (Td,on) up to 363.41 ºC, a slightly higher value than that obtained for PCF1 

(≈8 ºC). The PCdF1 thermogram exhibited a maximum decomposition temperature (Td) at 
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approximately 380.03 ºC (≈39% weight loss), usually assigned to the degradation of the ester 

linkages within the polymeric chain.51  

 

Table 3.4. Decomposition at onset of weight loss, maximum decomposition, glass transition, 

melting and crystallization temperatures of PCdF1 and PCF1 homopolyesters. 

polyester Td,on / ºC Td / ºC Tg / ºC a) Tg / ºC b) Tm / ºC a) Tc / ºC a) 

PCdF1  363.41 380.03 174.9 159.0 nda - 

PCF1 354.97 377.46 104.8 102.9 246.7 210.0 

a) DSC measurements (nd = not detected below 300 oC); b) DMTA measurements. 

 

 

Figure 3.4. TGA and derivative TGA thermograms of PCdF1 and PCF1. 

 

These results are also slightly higher than those obtained for PCF1, which displays a Td 

at approximately 377.46 ºC (≈38% weight loss) which is slightly above a reported value.43 

These results indicate that the incorporation of CHD (or even CHDM moiety) into the 

backbone of FDCA-based polyesters lead to materials with high thermal stability, presenting 

a very similar behavior compared to those polymers obtained from TPA, namely, PCdT and 

PCT, having Td around 290 and 424 ºC, respectively.5,52,53 
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The DSC thermogram of PCdF1 (Table 3.4 and Figure 3.5) exhibited only a Tg at an 

extremely high temperature, around 174.9 ºC, corroborated by DMTA results displaying in 

this case a Tg at ≈159.0 ºC.  

 

 

Figure 3.5. DSC thermograms of a) PCdF1 and b) PCF1. 

 

Despite some crystallinity of PCdF1 due to its regular structure, and confirmed by XRD 

studies (discussed below), no melting event was observed in its DSC tracing up to 300 ºC, 

very near where its thermal decomposition begun (≈363 ºC). Hence, PCdF is expected to 

have a very high melting temperature which has some practical implications. The 

processability of PCdF, in similarity to the petro-based PCT must be carried out very 
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carefully,6,54 since there is a narrow processing window between Tm and the initial 

degradation temperature. This issue could be attenuated by further increasing the molecular 

weight of this polymer by applying a third stage of solid state polymerization after 

conventional two-step polytransesterification. Instead, the narrow temperature range 

between Tg and Tm could also be, at least in part, circumvented by using lower-molecular 

weight polymers where, e.g., PCdF2 has a Tm ≈ 201.9 ºC and a Td ≈ 295.4 ºC. 

PCF1 DSC trace (Table 3.4 and Figure 3.5) also displayed a glass transition but at a lower 

temperature (104.6 ºC), and crystallization and melting accents, viz. around 209.95 and 246.7 

ºC, respectively. These results are in accordance with the chemical structure of PCdF1 and 

PCF1, where the absence/presence of the two methylene groups is associated with distinct 

thermal transition values. For example, the absence of CH2 moieties in PCdF1 results in a 

more rigid polymer chain backbone, and accordingly it has the highest Tg; oppositely, the 

presence of CH2 groups in PCF provides flexibility to this polymer chains and consequently 

a lower Tg was reported. 

DMTA analysis (Figure S1, Supporting Information) was used to determine the Tg of the 

homopolymers, and they have corroborated the DSC results. The tan δ traces of PCdF and 

PCF homopolyesters displayed Tg features at around 159 and 103 ºC (Table 3.4), 

respectively. From the previous results for the furan-cycloaliphatic polyesters obtained in 

this study, we can observe that the thermal properties of these polyesters are typically 

influenced by the absence/presence of the methylene moieties. Indeed, the restriction in the 

cyclic ring associated with the absence of methylene moieties in PCdF has resulted in a 

higher polymer chain rigidity, and subsequently higher thermal behavior in terms of Td,on, 

Td, and Tg as discussed previously. 

 

3.3. X-Ray diffraction analysis 

The XRD pattern (Figure 3.6) of PCdF1 homopolyester synthesized in this work is in 

agreement with the DSC results described above, exhibiting a semicrystalline character with 

peaks at 2θ ≈ 18º and 21º. In general, PCdF1 pattern is very similar to that of the related PCF 

(2θ ≈ 17, 19, and 22º), although with peaks slightly shifted to lower angles indicating not so 

closer crystallographic packing. 
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Figure 3.6. XRD patterns of PCdF1 and PCF1 homopolyesters. 

 

4. Conclusions 

In summary, the realm of FDCA-based polyesters has been expanded to a new polymer 

with enhanced thermal properties incorporating 1,4-cyclohexanediol. The ensuing poly(1,4-

cyclohexylene 2,5-furandicarboxylate) polyester has shown semicrystalline nature with 

enhanced thermal stability (Td around 380.0 ºC and Tg ≈ 174.9 ºC). A comparison with the 

related poly(1,4-cyclohexanedimethylene 2,5-furandicarboxylate) showed that the Tg 

increased with the stiffness of the linkage of furanic and the cyclohexylene ring. Moreover, 

these materials could find several interesting industrial applications, namely for optical films 

or for injection molding materials, similar to PCT polymers. 
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Abstract 

Poly(ether ester)s (PEEs) represent a promising class of segmented copolyesters, with 

high commercial interest due to their unique thermal features, namely high thermal stability 

and low melting temperatures, which enables their industrial processability at lower 

temperatures than the conventional ones. The synthesis of PEEs based on renewable 2,5-

furandicarboxylic acid (FDCA) is still scarce, however the ensuing copolyesters revealed to 

possess very similar thermal and mechanical properties to those of their petroleum-based 

counterparts. In this context, a series of poly(1,4-butylene 2,5-furandicarboxylate)-co-

poly(poly(propylene oxide) 2,5-furandicarboxylate) copolyesters with different composition 

of stiff poly(1,4-butylene 2,5-furandicarboxylate) (PBF) and soft poly(poly(propylene 

oxide) 2,5-furandicarboxylate) (PPOF) moieties were synthesised, via a two-step bulk 

polytransesterification reaction. The molar fraction of the PPOF moieties introduced in the 

feed was 10, 20 or 50 mol%. All materials were characterised in detail through several 

techniques, e.g. ATR FTIR, 1H and 13C NMR, TGA, DSC, DMTA and XRD. Finally, their 

hydrolytic and enzymatic degradation evaluation was also assessed. The ensuing 

copolyesters presented semi-crystalline nature for higher PBF/PPOF ratios, and for 

approximately equal amounts of PBF and PPOF an amorphous viscous liquid copolyester 

was obtained. Moreover, is was observed that the presence of the appending methyl group 

of PPO unit lead a slightly decreased on the maximum degradation temperatures when 

compared to PBF, however remaining thermally stable up to 308 ºC. Nevertheless, due to 

the enhanced range between their glass and melting temperatures (values of -42.3 to -32.6 

ºC and 124.2 to 147.6 ºC, respectively), new application fields could be achieved. 

 

Keywords: 2,5-Furandicarboxylic acid; poly(propylene oxide); poly(ester-ether) 

copolymers; tuneable thermal properties. 

 

1. Introduction 

The massive consumption of fossil-based polymers on a variety of commodity objects of 

daily life has prompted, in the last decades, to the development of renewable-based 

alternatives with emphasis on their sustainability. Among the renewable-based polymers 
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polyesters derived from 2,5-furandicarboxylic acid (FDCA) are some of the most promising. 

FDCA is a renewable-based aromatic monomer building block monomer that has been 

widely explored as precursor of several homopolyesters, with very similar properties to those 

obtained their non-renewable counterpart, namely terephthalic acid (TPA).1,2 

Some examples of polyesters synthesised from FDCA are poly(ethylene 2,5-

furandicarboxylate) (PEF)3 and poly(1,4-butylene 2,5-furandicarboxylate) (PBF), among 

others, with similar properties to those of their TPA counterparts.4–11 Furthermore, several 

other diols besides linear ones have been explored to prepare FDCA-based homopolymers, 

namely branched diols such as 1,2-propanediol, 2,3-butanediol, 2-methyl-1,3-propanediol 

and 2,2-dimethyl-1,3-propanediol.12–18 The ensuing materials presented even higher Tg´s 

than those of their corresponding homopolyesters synthesised with linear diols with the same 

number of carbon atoms. 

In addition, a demand for new polyesters with specific properties emerged due to the 

necessity to fulfil specific application gaps, namely in the fields of biomaterials or 

elastomeric compounds. In this context, some studies19–23 have focused on the synthesis of 

FDCA-based poly(ester-ether)s (PEE´s) copolymers composed of polyether soft moieties, 

e.g., poly(butylene glycol) (PBG)23 and/or poly(ethylene glycol) (PEG)21,22 to replace their 

fossil-based counterparts, such as poly(butylene 1,4-terephthalate)-co-poly(poly(butylene 

glycol) 1,4-terephtalate) (PBT-co-PBGT) or poly(butylene 1,4-terephthalate)-co-

poly(poly(ethylene glycol) 1,4-terephtalate) (PBT-co-PEGT). Commercial PEEs based on 

TPA, find important applications among the biomedical field.24,25 Indeed, PBT-co-PEGT 

copolymers are a well-known commercial PEE´s (under trade mark of PolyActive®)26, and 

are widely used for drug delivery systems, presenting high thermal stability, as well as 

enhanced flexibility when compared to PET. This class of polymers show great potential 

specially if prepared from FDCA, nonetheless, the literature in furanic PEEs is still scarce.19–

23 Zhou et al.19 presented the first study, reporting the synthesis of poly(1,4-butylene 2,5-

furandicarboxylate)-co-poly(poly(butylene glycol) 2,5-furandicarboxylate) (PBF-co-PBGF) 

copolyesters, with enhanced thermal (maximum decomposition temperatures varying from 

363 to 378 ºC) and mechanical properties (elongation at break between 381 to 832%). Sousa 

et al.20 also reported the synthesis of new poly(ester-ether)s copolymers from FDCA and 

PEG with different molecular weights (Mn of ~ 200, 400 and 2000 g/mol), and isosorbide, 

possessing high thermal stability. More recently, a series of poly(1,4-butylene 2,5-
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furandicarboxylate)-co-poly(poly(ethylene glycol) 2,5-furandicarboxylate) (PBF-co-PEGF) 

copolyesters were reported also displaying high thermal stability (up to 380 ºC) and low Tg´s 

(ranging from -43.1 to -35.4 ºC), enabling their manufacturing process.21,22 Hydrolytic 

degradability of PBF-block-PEGF was also studied, showing that they can be easily 

hydrolysed under alkaline conditions (phosphate buffered saline (PBS) solution at pH=12).22 

Further, Chi et al.23 also synthesised several PEE’s from FDCA, neopentyl glycol and 

poly(butylene glycol), with enhanced flexibility (elongation at break values from 38 to 

1281%). 

However, to our knowledge, the use of poly(propylene oxide) (PPO) as comonomer for 

the synthesis of PPE’s copolymers was not reported in the literature before. In this context, 

copolymerisation of FDCA, 1,4-butanediol (BD) and PPO, could be an elegant way to obtain 

materials with low Tg, facilitating its processability, and at same time maintaining the 

thermal stability, thus enlarging the role of potential applications. Precisely, in this study, a 

series of poly(1,4-butylene 2,5-furandicarboxylate)-co-poly(poly(propylene oxide)) (PBF-

co-PPOF) copolyesters were synthesised by a typical two-step bulk polytransesterification 

procedure. The ensuing copolyesters were extensively characterised by SEC, ATR FTIR, 1H 

and 13C NMR, TGA, DSC, and DMTA analysis. Importantly, PBF-co-PPOF bearing 20 

mol% of PPOF moieties was also submitted to a hydrolytic and enzymatic degradability 

evaluation.  

 

2. Experimental 

2.1. Materials 

1,4-Butanediol (BD, 99%), poly(propylene oxide) (PPO, average Mn ~1 000), deuterated 

chloroform (CDCl3-d, 99 atom % D), titanium(IV) tert-butoxide (Ti(OBu)4, 97 %), sodium 

phosphate dibasic (≥99%), sodium phosphate monobasic (≥99%) and Porcine pancreas 

lipase (Type II, 100-500 units/mg protein) were purchased from Sigma-Aldrich Chemicals 

Co. 2,5-Furandicarboxylic acid (FDCA, >98%) was purchased from TCI Europe NV. 

Concentrated hydrochloric acid (37 %) was purchased from Panreac; and methanol and 

chloroform (pro-analysis and HPLC grade) were purchased from Fisher Scientific. 

Polystyrene standards with molecular weights between 4 290 and 66 350 Da were supplied 

by Polymer Laboratories. All chemicals were used as received, without further purification. 
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2.2. Synthesis of dimethyl 2,5-furandicarboxylate (DMFDC) monomer 

The synthesis of DMFDC followed a previously reported procedure.3 Typically, DMFDC 

was prepared by reacting FDCA with an excess of methanol, under acidic conditions (HCl), 

at 80 ºC for 15 h. The final product was isolated in 71 % yield as a white powder. FTIR 

(ν/cm-1): 3168 (=C-H); 2965 (C-H); 1706 (C=O); 1578, 1522 (C=C); 1288 (C-O); 1024 

(furan ring breathing); 969, 825, 757 (2,5-dibustituted furan ring). 1H NMR (300 MHz, 

CDCl3, δ/ ppm): 7.2 (s, H3/H4 furan ring); 3.9 (s, 2,5-COOCH3). 
13C NMR (75 MHz, CDCl3, 

δ/ppm): 158 (2,5-C=O); 147 (C2/C5 furan ring); 118 (C3/C4 furan ring); 52 (2,5-COOCH3). 

 

2.3. Syntheses of poly(1,4-butylene 2,5-furandicarboxylate)-co-poly(poly(propylene 

oxide)) (PBF-co-PPO) copolymers and poly(1,4-butylene 2,5-

furandicarboxylate) (PBF) 

The polyesters were prepared by a two-step bulk polytransesterification approach 

following an adapted procedure reported elsewhere.20 Reactions were carried out by mixing 

DMFDC (mg, mmol) and an equimolar amount of BD and PPO (BD/PPO molar ratios of 

100/0, 90/10, 80/20, 50/50, Table 4.1), in the presence Ti(OBu)4 as catalyst (1 wt% relative 

to the total mass of monomers). In the first step, the mixture was heated progressively from 

100 up to 190 oC, for 5 h, under a nitrogen atmosphere and with constant stirring. In the 

second step, the reaction proceeded under vacuum (10-3 bar) and the temperature was slowly 

raised to 200 ºC for 1h, and finally kept at 210 ºC, for 2 h. The ensuing solid products were 

purified by dissolving in chloroform (~20 mL), and then pouring in an excess of cold 

methanol, filtered, dried and weighted. In the case of PBF-co-PPOF 50/50 copolyester 

(BD/PPO = 50/50), viscous liquid at room temperature, a liquid-liquid extraction procedure 

using chloroform (~20 mL) was used instead. 

Hereafter, the copolyesters will be referred to as PBF-co-PPOF 90/10, 80/20 and 50/50, 

according to the BD/PPO molar ratio used as feed. Table 4.1 presents the molar amounts of 

each monomer used as well as the weight average molecular weights (Mw) and dispersity (Đ 

= Mw/Mn) of the polymers. 
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2.4. Characterization techniques 

Size-exclusion chromatography (SEC) analyses of copolyesters were performed on a 

Viscotek (Viscotek TDAmax) equipped with a differential viscometer (DV) and right-angle 

laser-light scattering (RALLS, Viscotek) and refractive index (RI) detectors. The column set 

consisted of a PLgel 5 μm guard column followed by two columns, namely Viscotek T5000 

and T4000 column, respectively. A dual piston pump was set with a flow rate of 1 mL min-

1. The eluent (DMF with 0.03% LiBr) was previously filtered through a 0.2 μm filter. The 

system was also equipped with an on-line degasser. The analyses were performed at 60 °C 

using an Elder CH-150 heater. Before injection, the samples were filtered through a PTFE 

membrane with 0.2 μm pore. The system was calibrated with narrow poly(methyl 

methacrylate) standards. 

Attenuated total reflectance Fourier transform infrared (ATR FTIR) spectra were 

obtained using a PARAGON 1000 Perkin-Elmer FTIR spectrometer equipped with a single-

horizontal Golden Gate ATR cell. The spectra were recorded after 128 scans, at a resolution 

of 4 cm-1, within the range of 500 to 4000 cm-1. 

1H, 13C nuclear magnetic resonance (NMR) spectra were recorded in CDCl3 using a 

Bruker AMX 300 spectrometer, operating at 300 or 75 MHz, respectively. All chemical 

shifts (δ) are expressed as parts per million (ppm), downfield from tetramethylsilane (used 

as the internal standard). Further, the calculation of the real incorporation of BD/PPO ratio 

(PBF/PPOFreal) the integration areas of OCH2 proton resonance of F-BD diad (δ ≈ 4.40 ppm) 

and of F-PPO diad (δ ≈ 3.93 ppm) were used, according to the equation: [AOCH2; F−BD/

(AOC𝐻2;F−BD +  AOC𝐻2;F−PPO)] / [AOC𝐻2;F−PPO / (AOC𝐻2;F−DB +  AOC𝐻2;F−PPO)]. 

The Average PBF sequence length was also calculated by the equation: 𝐿𝑛,𝐵𝐹 = 1/[(1 −

(𝑃𝐵𝐹𝑟𝑒𝑎𝑙 /100))]27. 

Thermogravimetric analyses (TGA) were carried out with a Setaram SETSYS analyser 

equipped with an alumina plate. Thermograms were recorded under a nitrogen flow of 20 

mL min-1 and heated at a constant rate of 10 °C min-1 from room temperature up to 800 °C. 

Thermal decomposition temperatures were taken at 5% weight loss step and at maximum 

decomposition temperatures from the heated samples (Td,5% and Td,max, respectively). 

Differential scanning calorimetry (DSC) thermograms were obtained with a DSC Q100 

V9.9 Build 303 (Universal V4.5A) calorimeter from Texas Instruments, using aluminium 

DSC pans. Scans were carried out under nitrogen with a heating rate of 10 °C min-1 in the 
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temperature range from -90 to 200 °C. Two heating/cooling cycles were repeated. Glass 

transition temperature (Tg) was determined using the midpoint approach (second heating 

trace); and cold crystallization (Tcc) and melting (Tm) temperatures were determined as the 

maximum of the exothermic crystallization peak and the minimum of the melting 

endothermic peak during the second heating scan, respectively. 

Dynamic mechanical thermal analyses (DMTA) were performed using a material pocket 

accessory with a Tritec 2000 DMA Triton, operating in the single cantilever mode. Tests 

were performed at 1 and 10 Hz and the temperature was varied from -100 to 200 ºC, at 2 ºC 

min-1. Tg was determined as the maximum peak of tan δ. 

X-ray diffraction (XRD) measurements were performed using a Philips X’pert MPD 

diffractometer operating with CuKα radiation (λ = 1.5405980 Å) at 40 kV and 50 mA. 

Samples were scanned in the 2θ range of 5 to 50º, with a step size of 0.04º, and time per step 

of 50 s. 

In vitro hydrolytic and enzymatic degradation tests were carried out using press-moulded 

square-shape samples (ca. 69-113 mg) of the prepared polyesters and placed into closed 

containers with phosphate buffer saline solution (PBS) (10 mL) or with a PBS solution (10 

mL ) containing Porcine pancreas lipase (concentration of 0.1 mg mL-1), for each test, 

respectively. The specimens were taken out of the related solution at regular intervals (each 

7 days), rinsed thoroughly with distilled water, dried at room temperature for 4 h and, 

weighed. To prevent saturation, both solutions were renewed every 7 days. Each 

measurement was repeated five times. The weight-loss percentage was calculated using the 

expression: 𝑊𝑒𝑖𝑔ℎ𝑡 𝑙𝑜𝑠𝑠 (%) =)[(𝑊0 − 𝑊𝑑)/𝑊0] × 100, where, Wo and Wd stand for the 

specimens weights prior and after incubation, respectively. 

 

3. Results and Discussion 

3.1. PBF-co-PPOF copolyesters synthesis and structural characterisation 

In this study the newly prepared poly(ester-ether)s copolymers are based on poly(1,4-

butylene 2,5-furandicarboxylate) (PBF) as rigid unit, and on a soft segment derived from 

poly(propylene oxide) (PPO) (Scheme 1). Interestingly the poly(ether) selected has a methyl 

side group which plays an important role on the structure-properties features, as discussed 

ahead. 
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Scheme 1. Synthesis of PBF-co-PPOF copolymers. 

 

PBF-co-PPOF were synthesised via a two-step conventional melt polytransesterification 

approach (Scheme 1),3 in the presence of Ti(OBu)4 catalyst and at relatively moderate 

temperatures, not exceeding 210 ºC, to avoid undesirable side reactions involving the furan 

moiety (e.g. decarboxylation reactions which are commonly associated to colour problem 

issues).1 The resulting polymers were isolated as powders (PBF, PBF-co-PPOF-90/10 and 

80/20) or a viscous liquid (PBF-co-PPOF-50/50) in relatively good yields that ranged from 

65 to 71 % (Table 4.1). Furthermore, these copolyesters showed a weight-average molecular 

weight Mw values between 23 100-41 600, and Đ around 2. 

 

Table 4.1. Molecular characteristics of PBF and PBF-co-PPOF copolymers. 

(Co)polymer 
BD/PPOfeed a 

(mol%) 

Yield b 

(%) 
Mw

 Đ 

PBF 100/0 71.0 - c - c 

PBF-co-PPOF-90/10 90/10 64.8 36 700 2.2 

PBF-co-PPOF-80/20 80/20 68.1 41 600 2.2 

PBF-co-PPOF-50/50 50/50 71.4 48 500 2.1 

a Molar feed percentage of BD and PPO units, respectively; b Isolation yields of purified 

polyesters in methanol; C Not determinate due to the insolubility of PBF in DMF. 
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The typical ATR FTIR spectra of all PBF-co-PPOF copolyesters and related PBF 

homopolyester (Figure 4.1) displayed two weak bands near 3150 and 3115 cm-1 attributed 

to the ν C-H bond of the furanic ring. Also, near 2968, 2930, 2893 and 2868 cm-1 there are 

four weak bands attributed to the anti-symmetrical and symmetrical stretching modes (ν C-

H asym and ν C-H sym, respectively) of the C-H bond of methylene and methyl groups 

related to the BD and PPO moieties, respectively. Additionally, both PBF and copolyesters 

spectra exhibited a very intense band near 1725 cm-1, arising from the C-O stretching 

vibration, typical of ester groups. Two bands at 1506 and 1573 cm-1, arising from the C-C 

bond of the furan ring, and C-O-C stretching vibrations appeared at around 1271 cm-1 and 

the typical vibration modes of 2,5-disubstituted furans were observed at 966, 822, and 769 

cm-1, were observed for PBF and PBF-co-PPOF materials. The presence of the above-

mentioned bands confirmed the success of the polymerisation reactions. 

 

 

Figure 4.1. ATR FTIR spectra of PBF-co-PPOF copolymers. 
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The chemical structure characterisation of all PBF-co-PPOF copolyesters and PBF 

homopolyester was also studied by 1H (Figure 4.2 and Table 4.2) and 13C NMR (Figure S2 

and Table 4.4). The main 1H NMR resonances and respective assignments of all polymers 

studied are summarised in Table 4.2. Figure 4.2 displays the 1H NMR spectrum of PBF-co-

PPOF-90/10. 

 

Table 4.2. Main 1H NMR resonances of PBF-co-PPOF copolyesters, and PBF and PPO 

homopolyester. 

δ / ppm Assignment Diads 

Integration area 

PBF 
PBF-co-PPOF 

PPO 
90/10 80/20 50/50 

7.21 H3 and H4; CH F-BD; FDCA-PPO 1.00 1.00 1.00 1.00  

5.26 d, d’ ; CHCH3 F-PPO – 0.14 0.37 0.92  

4.40 a, a'; C(O)OCH2CH2 F-BD 2.01 1.66 1.28 0.46  

3.67 c, c’; C(O)OCH2 F-PPO – 0.30 0.84 1.84  

3.54 f ; OCH2 PPO-PPO – 1.91 5.14 17.89 2.01 

3.40 g ; OCH PPO-PPO – 1.03 2.77 9.46 1.00 

1.91 b, b'; C(O)OCH2CH2 F-BD 2.01 1.66 1.41 0.48  

1.34 e, e’ ; CHCH3 F-PPO  0.44 1.30 3.04  

1.15 h ; OCHCH3 PPO-PPO – 3.10 8.60 28.50 3.02 

 

The 1H NMR spectra of all polymers (Figure 4.2 and Table 4.2) displayed the typical 

resonances attributed to the F-BD diad at approximately δ 7.21, 4.40 and 1.91 attributed to 

the H3 and H4 protons of the furan ring, and to the C(O)OCH2CH2 and C(O)OCH2CH2 

protons of the BD moiety, respectively. 

In the copolymers spectra the corresponding resonances associated to the PPO-F diads 

were also detected: δ 5.26, 3.67 and 1.34 ppm, arising from the C(O)OCH, C(O)OCH2 and 

C(O)OCHCH3 protons, in the neighbouring of the furan ring. Moreover, the protons related 

to the PPO-PPO units were also identified at 3.54, 3.40, and 1.15 ppm, related to OCH2 

(ether linkage), OCH and OCHCH3, respectively. 

Furthermore, the 1H NMR spectra data was used to access the real molar percentage of 

PBF and PPOF moieties in the copolyesters backbone, due to the important impact this ratio 

has on the ensuing copolyesters properties. The PBF/PPOF real incorporation was 

determined using the integration areas of C(O)OCH2 proton resonances (in the neighbouring 
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of furan ring) of the F-BD (δ at 4.40 ppm) and F-PPO (δ at 3.93 ppm) diads, respectively, 

and the main results are presented in Table 4.3. 

 

 

Figure 4.2. 1H NMR spectrum of PBF-co-PPOF-90/10 copolymer in CHCl3-d. 

 

Table 4.3. Comparison between the initial target molar percentage and the real molar 

percentage of PBF and PPOF in the polyesters backbone. 

(Co)polymer 
PBF/PPOFfeed 

(mol%) 

PBF/PPOFreal 

(mol%) 
Ln, BF 

PBF 100 / 0 100 / 0 – 

PBF-co-PPOF-90/10 90 / 10 85 / 15 6.5 

PBF-co-PPOF-80/20 80 / 20 76 / 24 4.2 

PBF-co-PPPOF-50/50 50 / 50 20 / 80 1.3 

a PBF/PPOF0 corresponds to the molar feed percentage of BD and PPO, respectively. b 

PBF/PPOFreal corresponds to the real incorporation of PBF/PPOF ratioc Average PBF 

sequence length. 

 

From Table 4.3, it is possible to observe that despite the BD and PPO feed ratio, there 

was a tendency for a higher incorporation of PPOF into copolyesters chains, most probably 

associated with BD lost during the polytransesterification step due to the high BD volatility. 
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The number average sequence length of BF unit (Ln,BF) was also assessed assuming that 

PBF-co-PPOF copolyesters are random copolyesters. It was found that Ln,BF increased with 

the BF content increasing, according with the theoretically expected values.20,21,28,29 

Importantly, the copolyester with the highest amount of PBF (PBF-co-PPOF-90/10) had a 

Ln,BF of 6.5. This is an important structural feature that is in accordance with a crystalline 

domain dominated by PBF segments, and corresponding melting behaviour, as discussed 

above. 

In terms of 13C NMR analysis (Table 4.4 and Figure S1), the observed resonances were 

in agreement with their expected structure and corroborated the above 1H NMR results and 

also the ATR FTIR data.  

 

Table 4.4. Main 13C NMR resonances of all PBF-co-PPOF copolyesters, and PBF and PPO 

homopolyester. 

Assignment Diads 

δ (ppm) 

PBF 
PBF-co-PPOF 

PPO 
90/10 80/20 50/50 

2-CO and 5-CO; C(O)O F-BD; F-PPO 158.0 158.0 158.0 158.0 - 

C2 and C5; C-C(O)O F-BD; F-PPO 146.8 146.8 146.8 147.0 - 

C3 and C4; C-H F-BD; F-PPO 118.5 118.5 118.5 118.2 - 

f ;  OCH2 PPO-PPO – 75.4 75.3 75.3 75.3 

g ; OCH PPO-PPO – 73.4 73.4 73.4 74.4 

c, c’; C(O)OCH2 F-PPO - 72.9 72.9 72.9 - 

d, d’ ; CHCH3 F-PPO – 71.7 71.7 71.3 - 

a, a'; C(O)OCH2CH2 F-BD 64.9 64.9 64.9 64.8 - 

b, b'; C(O)OCH2CH2 F-BD 25.4 25.4 25.3 25.0 - 

h ; OCHCH3 PPO-PPO  - 17.3 17.3 17.3 17.3 

e, e’ ; CHCH3 F-PPO – 16.9 16.8 16.8 - 

 

3.2. Thermal behaviour 

PBF-co-PBDG copolyesters were extensively characterised in terms of their thermal 

behaviour, through TGA, DSC and DMTA analyses (Figure S2, S3 and S4, and Table 4.5). 

In general, the TGA thermograms (Figure S2 and Table 4.5) of the copolyesters (carried 

out under nitrogen atmosphere) exhibited one major characteristic event at the maximum 

decomposition temperatures (Td,max) of 340-365 ºC. Also, the newly prepared copolymers 

showed to be thermally stable up to Td,5% ≈ 308 ºC.  
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Table 4.5. Decomposition at 5% weight loss (Td,5%), maximum decomposition (Td,max), glass 

transition (Tg), melting and cold crystallisation temperatures (Tcc) of PBF, PPO and PBF-co-

PPOF copolyesters. 

(Co)polymer Td,5% / ºC Td,max / ºC) 

DSC a DMTAb 

Tg (ºC) 
Tcc 

(ºC) 

Tm 

(ºC) 

Tg 

(ºC) 

Tm 

(ºC) 

PBF 348.7 380.5 - c - 176.1 75.6 166.9 

PBF-co-PPOF-90/10 284.7 347.2 - - 143.8 -32.6 147.6 

PBF-co-PPOF-80/20 288.9 340.3 - 29.9 - -37.2 124.2 

PBF-co-PPOF-50/50 308.1 365.2 -55.1 - - -42.3 - c 

PPO 283.0 323.4 -72.0 – -67.0 d - - - - 
a Determined by DSC analysis; b Determined by DMTA analysis; c Not observed. d Values obtained 

from references 
30,31

.  

 

As shown in Table 4.5, the copolymers had both Td,5% and Td,max results lower than those 

observed to PBF. These less favourable thermal results could be associated to the presence 

of the appending methyl group, as already reported for other polyesters also having side 

groups, such as poly(2,3-butylene 2,5-furandicarboxylate) compared to PBF.32 Nevertheless, 

all PBF-co-PPOF copolyesters have higher Td,max than PPO.  

The DSC and DMTA thermograms of all copolyesters are shown in Figure S3 and S4, 

and the main results are summarized in Table 4.5.  

From DSC traces (Figure S3 and Table 4.5) it is possible to observe that PBF-co-PPOF-

90/10 and -80/20 copolyesters presented only a melting (Tm) or cold transition (Tcc) and at -

143.8 and 29.9 ºC, respectively. Furthermore, using DTMA analysis (Figure S4) were 

reported Tg values of 75.6, -32.6, -37.2 and -42.3 ºC, for PBF and PBF-co-PPOF-90/10, 

80/20 and 50/50 materials, respectively. In fact, PBF-co-PPOF-80/20 copolyester also 

displaying a Tm value of 124.2 ºC, maintaining the ability to crystallise similar to PBF (Tm 

of 166.9 ºC) (Table 4.5). In the case of PBF-co-PPOF-50/50 copolyester, the absence of Tm 

revealed some loss on the crystallinity, especially for a higher incorporation of PPOF 

moieties, probably due to some incompatibility among PBF and PPOF crystallinity domains. 

Although, copolyesters with higher incorporation of PPOF moieties in their backbone 

chain have shown lower Tg and Tm values when compared with those that presented a higher 

incorporation of BF moieties, however much higher when compared with the amorphous 

PPO homopolyester (Tg between -67 to -72 ºC).30,31 These results were the expected since 

the incorporation of more flexible moieties into FDCA-based copolyesters typically results 
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on a decreased on copolyesters thermal features.19,21 In fact, the incorporation of PEG soft 

moieties into PBT and PPT polymer chain also lead to a decreased on both Tg and Tm, due 

to the flexibility gain of the resulting materials.19,27,33–35 

 

3.3. X-ray diffraction analysis  

The XRD pattern (Figure 4.3) of the PBF homopolyester synthesized in this work is in 

agreement with other publish results, 14,36–38 exhibiting diffraction peaks at 2θ ~ 10, 18, 23 

and 25º. 

 

 

Figure 4.3. XRD patterns of PBF and all PBF-co-PPOF materials. 

 

The XRD patterns of PBF-co-PPOF-90/10 and 80/20 copolymers displayed diffraction 

peaks at 2θ ≈ 18, 23 and 25º, quite similar to the PBF pattern. This clearly indicates that the 

ability of PBF-co-PPOF copolyesters to crystallise is mainly associated to PBF segments 

(with Ln,BF equal to 6.5 and 4.2, respectively). Moreover, these results are in perfect 

agreement with the above DSC and DMTA data, and also with other FDCA or TPA-based 

PPEs reported in the literature.19,21,33,39 

As expected, in the case of the viscous liquid PBF-co-PPOF-50/50 copolyester, only a 

halo centred at 2θ ≈ 19 º was observed, in accordance with an essential amorphous nature. 
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3.4. Hydrolytic and enzymatic degradation tests 

As mentioned above, in addition to specific thermal properties, it was also important to 

understand if the newly prepared materials degrade under hydrolytic and enzymatic 

conditions. The evaluation of the hydrolytic and enzymatic degradation behaviour was 

performed evaluated in terms of weight loss percentage versus time (Figure 4.4) for PBF-

co-PPOF-80/20 copolyester, with real incorporation of PPOF moieties around 24 mol%. 

However, the polymer’s weight loss under hydrolytic conditions was almost negligible. This 

result was in the same line with those reported for PBF-co-PEGF copolyesters incorporating 

similar amount of PBF moieties,22 showing that those copolyesters were not hydrolysable 

under neutral pH conditions. In fact, also PBT-co-PEGT copolyesters incorporating higher 

PBT moieties presented very low percentage weight losses (almost zero) in similar 

hydrolytic conditions used in this study (pH ~ 7 and 37 ºC).34 

 

 

Figure 4.4. Percentage weight loss of PBF-co-PPOF-80/20 copolyester along 12 weeks. 

 

Nevertheless, the incubation with a Porcine pancreas lipase in PBS solution slightly 

increased the weight loss of the ensuing copolyesters. Nevertheless, through hydrolytic and 

enzymatic degradation tests, just 1.5 and 2.3 % weight loss were achieved, respectively. 
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Further, incorporation of PPO in the copolymers, is however, expected to counteract this low 

weight loss. 

 

4. Conclusions 

In summary, a new class of FDCA-based poly(ester-ether) copolymers has been 

accomplished, incorporating both stiff and soft moieties into their copolymer backbone. The 

ensuing copolyesters have shown high thermal stability (Td,max between 340 to 365 ºC) and 

Tg at sub-ambient temperatures, namely from -42.3 to -32.6 ºC. Moreover, the semi-

crystalline character was only observed for copolyesters with higher BF content, revealing 

that PBF units were the mainly responsible for the crystalline behaviour of the ensuing 

materials. Furthermore, PBF-co-PPOF-80/20 copolyester had shown a week hydrolysable 

behaviour, presenting a maximum percentage weight loss of 2.3 %, after 12 weeks. 

Finally, due to their high thermal stability, as well as the presence of both stiff and soft 

moieties in the copolymer chains, these materials could finding interesting industrial 

applications, namely as thermoplastic materials. 
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Figure S1. 13C NMR spectra in CHCl3-d of PBF-co-PPOF-90/10 copolymer. 
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Figure S2. TGA (a) and DTGA (b) thermograms of PBF-co-PPOF copolyesters and PBF 

homopolyester. 
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Figure S3. DSC curves of all copolymers and PBF homopolyester. 
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Figure S4. Tan δ of PBF and PBF-co-PPOF (co)polymers, at 1 Hz.  
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Abstract  

Polyesters made from 2,5-furandicarboxylic acid (FDCA) have been in the spotlight due 

to their renewable origins, together with the promising thermal, mechanical, and/or barrier 

properties. Following the same trend, (nano)composite materials based on FDCA could also 

generate similar interest, especially because novel materials with enhanced or refined 

properties could be obtained. This paper presents a case study on the use of furanoate-based 

polyesters and bacterial cellulose to prepare nanocomposites, namely acetylated bacterial 

cellulose/poly(butylene 2,5-furandicarboxylate) and acetylated bacterial 

cellulose/poly(butylene 2,5-furandicarboxylate)-co-(butylene diglycolate)s. The balance 

between flexibility, prompted by the furanoate-diglycolate polymeric matrix; and the high 

strength prompted by the bacterial cellulose fibres, enabled the preparation of a wide range 

of new nanocomposite materials. The new nanocomposites had a glass transition between -

25–46 ºC and a melting temperature of 61–174 ºC; and they were thermally stable up to 239–

324 ºC. Furthermore, these materials were highly reinforced materials with an enhanced 

Young’s modulus (up to 1239 MPa) compared to their neat copolyester counterparts. This 

was associated with both the reinforcing action of the cellulose fibres and the degree of 

crystallinity of the nanocomposites. In terms of elongation at break, the nanocomposites 

prepared from copolyesters with higher amounts of diglycolate moieties displayed higher 

elongations due to the soft nature of these segments. 

 

Keywords: 2,5-furandicarboxylic acid; poly(1,4-butylene 2,5-furandicarboxylate); 

biobased materials bacterial cellulose; nanocomposites; mechanical properties 

 

1. Introduction 

The last decades have assisted to a burgeoning search for more sustainable chemicals, 

polymers and materials due to severe environmental concerns and to the announced 

depletion of fossil resources.1 In this context, renewable-based chemicals, such as those 

derived from C5 and C6 biomass sugars, mainly the 2,5-furandicarboxylic acid (FDCA), and 

the polyesters thereof, have been in the spotlight.2 Some of the most successful examples, 

due to their promising properties, comparable to fossil-based terephthalate homologous, 
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include poly(ethylene 2,5-furandicarboxylate) (PEF),3,4 and poly(1,4-butylene 2,5-

furandicarboxylate) (PBF),5–14 also known as poly(ethylene 2,5-furanoate) and poly(1,4-

butylene 2,5-furanoate), respectively. They are expected to replace poly(ethylene 

terephthalate) (PET) and poly(1,4-butylene terephthalate) (PBT), respectively, on various 

conventional applications of thermoplastics, such as for example in packaging materials in 

the case of PEF or in electronic applications in the case of PBF.2 

Furthermore, FDCA-derived copolyesters have also been extensively studied aiming to 

expand, or refine even further the properties and/or potential applications of their parent 

homopolymers.7,15–22 Among the wide library of these copolymers, furanoate-aliphatic 

copolyesters were the most studied,2,15–17,21–30 and those incorporating ether linkages, such 

as the work of Lotti et al.29 based on diglycolic acid or of Sousa et al.16 using poly(ethylene 

glycol), are particularly interesting. For example, the 100% renewable poly(butylene 2,5-

furanoate)-co-(butylene diglycolate)s (with 60 to 90 mol% of furanoate moieties), 

henceforth designated by PBF-co-PBDG, are biodegradable and could have an elongation at 

break of up to 4 times higher than PBF.29 In fact, the incorporation of high quantities of soft 

butylene diglycolate units brings significant improvement in the elongation, but at the 

expense of the Young’s Modulus (roughly 10 times lower compared to PBF). In terms of 

gas barrier properties, PBF-co-PBDG can exhibit adequate behaviour to packaging materials 

applications. The oxygen gas transmission rate (GTR) varied between 111-193 cm3 m-2 d-1 

bar-1.29 

More recently, (nano)composite and hybrid materials based on furanoate-based 

polymeric matrices, have also been developed,31–36 although still modestly and mostly 

restricted to PEF. However, the significant properties improvement of the ensuing materials, 

relevant to their processing and/or application (e.g. crystallisation rate improvement), will 

predictably foster their rapid development in the near future. PEF-derived hybrid materials 

were prepared by compounding PEF with inorganic fillers, added during the synthesis of the 

polymer. For example, Bikiaris and co-workers32 demonstrated that the in situ preparation 

of PEF/SiO2 and PEF/TiO2 hybrid materials, during solid state polymerization, lead to 

slightly higher molecular weight PEF due to the presence of the SiO2 or TiO2 nanoparticles. 

Lotti et al.35 also synthesised hybrid materials based on PEF containing either graphene 

oxide or multi walled carbon nanotubes (non-functionalised, or functionalised with -COOH 

or -NH2 groups). Differential scanning calorimetry analysis indicated that all the fillers acted 
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as nucleating agents for the PEF crystallisation, albeit in a different extent. Other works are 

focused on PEF-derived (nano)composites with cellulose fibres,31,36 organically modified 

montmorillonite clays and sepiolite clays.33,34 Of particular interest is the work carried out 

by the Guigo and Sbirrazzuoli group on PEF composites using small quantities of 

nanocrystalline cellulose (around 4 %wt) and prepared via twin screw extrusion31 or solvent 

casting.36 These composites have enhanced crystallisation properties in the presence of the 

fibres, namely faster crystallisation31 and nucleating effect,36 despite some compatibility 

problems associated to the hydrophilic nature of pristine cellulose oppositely to PEF 

homopolyester.36 Adding to this, nanocellulose fibres, in particular bacterial cellulose (BC) 

produced by Gluconoacetobacter sacchari bacterial strain, in high purity, due to its 

nanofibrillar structure bring unique physical and chemical properties to the nanocomposites 

thereof,37,38 including optically transparency and high mechanical strength.39 However, to 

the best of our knowledge, BC has never before been used in the preparation of furanoate-

based nanocomposites. In this vein, this study presents a new family of fully bio-based 

nanocomposites, prepared from a series of PBF-co-PBDG copolyesters, or PBF, and 

modified bacterial cellulose previously submitted to heterogeneous acetylation (to improve 

compatibility with the thermoplastic matrices). These PBF-co-PBDG/ and PBF/acetylated-

BC nanocomposites were chosen as a case study for a broader development of furanoate-

based nanocomposites and in particular due to the potential to enhance the mechanical 

properties. The newly prepared nanomaterials were fully characterised through several 

structural, thermal and mechanical techniques, as well as in terms of gas permeability aiming 

to access their potential use for packaging applications. 

 

2. Experimental 

2.1. Materials 

Bacterial cellulose in the form of wet membranes was produced using the 

Gluconoacetobacter sacchari bacterial strain and conventional culture medium conditions, 

as described elsewhere.40 2,5-Furandicarboxylic acid (FDCA, >98%) and 1,1,1,3,3,3-

hexafluoro-2-propanol (HFP, >99%) were purchased from TCI Europe NV. Diglycolic acid 

(DGA, 98%), 1,4-butanediol (BD, 99%), titanium (IV) tert-butoxide (Ti(OBu)4, pro-

analysis), trifluoroacetic acid, (TFA, 99%) and deuterated trifluoroacetic acid (TFA-d, 99 
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atom % D) were supplied by Sigma-Aldrich Chemicals Corporation (Sintra, Portugal). 

Sulfuric acid (H2SO4, 96%) was supplied by Acros Organic (Geel, Belgium). All chemicals 

were used as received. 

 

2.2. Heterogeneous acetylation of bacterial cellulose (Ac-BC) 

Prior to heterogeneous acetylation, the BC wet membrane was disintegrated using a 

blender and an Ultra-Turrax equipment (15 min at 20 500 rpm), and solvent exchanged with 

ethanol and acetone (in triplicate). Heterogeneous acetylation of BC fibres was, then, carried 

out following a well-stablished protocol described elsewhere.39 Briefly, acetic anhydride 

(225 mL) was placed in a 500 mL round flask into an ice bath for 20 minutes, then 1 mL of 

H2SO4 was added and finally the wet BC fibres (≈ 40 g) were added to the mixture. The 

reaction was allowed to proceed under stirring for 4 h, at 30 ºC. The ensuing BC acetylated 

fibres (Ac-BC) were filtered and sequentially washed with water, acetone, ethanol, water 

and again with ethanol. Finally, Ac-BC nanofibres were Soxhlet extracted with ethanol for 

12 h to remove any residual trace of acetic anhydride or other impurities, and solvent 

exchanged with acetone followed by chloroform. 

 

2.3. Preparation of the acetylated BC/Poly(butylene furandicarboxylate-co-butylene 

diglycolate) nanocomposites (Ac-BC/PBF-co-PBDG) 

2.3.1. Synthesis of PBF-co-PBDG copolyesters and corresponding homopolyesters 

The polyesters were synthesized via a procedure described elsewhere18,41: Fisher 

esterification of FDCA, esterification stage, and finally polycondensation reaction. In brief, 

firstly, dimethyl 2,5-dimethylfurandicarboxylate (DMFDC) was prepared by reacting FDCA 

(192.2 mmol) with an excess of methanol (364 mL), under acidic conditions (HCl, 15 mL), 

at 80 ºC for 15 h. The reaction mixture was allowed to cool down, and the ensuing white 

precipitate was isolated by filtration in 70% yield. Secondly, DMFDC and DGA (mol% 

DMFDC / mol% DGA ≈ 90/10, 75/25, 50/50, 25/75 and 10/90) were mixed with an excess 

of BD (1.5 mol per 1 mol of DMFDC and DGA) under a nitrogen atmosphere. Then, the 

temperature was raised to 110 ºC, Ti(OBu)4 catalyst (1.4 mmol) added and the temperature 

was again progressively raised to 200 ºC. Here, a slightly different procedure was followed 

depending on the polyester being synthesized. 
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In the case of PBF, PBF-co-PBDG-90/10, 75/25 and 50/50 (i.e., those polyesters prepared 

from higher amounts of DMFDC) the reaction mixture was kept at 200 ºC for 4 h. Then, the 

reaction proceeded by applying vacuum (ca. 10-3 bar) for 1 h. Subsequently, the temperature 

was raised again to approximately 210 ºC and kept at that maximum temperature for more 4 

h. In the other cases of PBDG, PBF-co-PBDG-25/75 and 10/90 the period at 200 ºC was 

only 2 h, followed by an additional 2 h period, at 210 ºC. In the third-step, the reaction 

proceeded at 210 ºC under vacuum, and then the temperature was raised to 220 ºC for 4 h.  

Then, the mixture was purified by dissolving the polymers in TFA (20 mL), and pouring 

into an excess of cold methanol (ca. 1 L), separated by filtration and dried. The isolation 

yields of the polymers were ca. 60%, which is in accordance with previous results.16 

 

2.3.2. Preparation of Ac-BC/PBF-co-PBDG nanocomposites, and corresponding 

homopolyesters nanocomposites 

The nanocomposites were prepared by the well-known solvent casting approach. The 

polyesters (0,21 g) were mixed with a BC or Ac-BC chloroform dispersion (0.0045 g/ml, 20 

mL) under magnetic stirring for 3 h. Then, the mixture was deposited into a square Teflon 

mould (6.5 cm2) and the films were casted in, at room temperature, for a minimum of 15 h, 

and finally heated at 30 ºC, under vacuum, for 12 h to remove any remaining solvent. The 

ensuing films had a thickness of approximately 0.098 ± 0.001 mm. 

 

2.4. Characterisation techniques  

Attenuated total reflectance Fourier transform infrared (ATR FTIR) spectra were 

obtained using a PARAGON 1000 Perkin-Elmer FTIR spectrometer (Villepinte, France) 

equipped with a single-horizontal Golden Gate ATR cell. The spectra were recorded after 

128 scans, at a resolution of 4 cm-1, within a range of 500 to 4000 cm-1. 1H and 13C nuclear 

magnetic resonance (NMR) spectra were recorded using a Bruker AMX 300 spectrometer 

(Barcelona, Spain), operating at 300 or 75 MHz, respectively. All chemical shifts (δ) were 

expressed as parts per million, downfield from tetramethylsilane (used as the internal 

standard).  

Elemental analyses (C and H) were conducted in triplicate using a LECO TruSpec 

analyser (Madrid, Spain). The degree of substitution (DS) was estimated through the 
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approach of Vaca-Garcia et al.42: DS= (5.13766 − 11.5592 × C)/(0.996863 × C − 0.856277 

× n + n × C) where n and C stand for the number of carbon atoms in the acyl group and for 

the carbon contents, respectively.  

Scanning electron microscopy (SEM) images of the surface and cross-sections of films 

were acquired using a field emission gun-SEM Hitachi SU70 microscope operating at 4 kV 

(Dreieich-Buchschlag, Deutschland ). Samples were deposited onto a sample holder and 

coated with carbon twice.  

X-ray diffraction (XRD) analyses were performed using a Philips X’pert MPD 

diffractometer (Valbom, Portugal) operating with CuKα radiation (λ = 1.5405980 Å) at 40 

kV and 50 mA. Samples were scanned in the 2θ range of 5º to 50º, with a step size of 0.04º, 

and a time per step of 50 s.  

Differential scanning calorimetry (DSC) thermograms were obtained with a DSC Q100 

V9.9 Build 303 (Universal V4.5A) calorimeter from Texas Instruments (Guyancourt, 

France), using steel DSC pans. Scans were carried out under nitrogen with a heating rate of 

10 °C min−1 in the temperature range of -90 to 250 ºC. Two heating/cooling cycles were 

repeated. Glass transition (Tg) was determined using the midpoint approach (second heating 

trace); melting (Tm) and crystallisation (Tcc) temperatures were determined as the maximum 

of the exothermic crystallisation peak, and the minimum of the melting endothermic peak 

during the second heating cycle, respectively.  

Thermogravimetric analyses (TGA) were carried out with a Setaram SETSYS analyser 

(Caluire, France) equipped with an alumina plate. Thermograms were recorded under a 

nitrogen flow of 20 mL min-1 and heated at a constant rate of 10 ºC min-1 from room 

temperature up to 800 ºC. Thermal decomposition temperatures were taken at the onset of 

significant weight loss (5%) and at maximum decomposition temperatures from the heated 

samples (Td,5% and Td, respectively).  

Tensile tests were obtained with an Instron 5564 tensile testing machine (Barcelona, 

Spain,) at a cross-head speed of 10 mm min-1 using a 500 N static load cell. The tensile test 

specimens were rectangular strips (50 mm × 10 mm) pre-conditioned for 72 h at 50% 

humidity and 30 ºC. Each measurement was repeated at least five times.  

Contact angle (CAwater) measurements with water were carried out using a Contact Angle 

System OCA20 goniometer (DataPhysics, Filderstadt, Germany) with SCA20 software 

using the sessile drop approach, and recorded during 40 s. Water was used as probe liquid, 
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and for each specimen, drops of 3 μL were deposited using a syringe (50 μL) onto the 

nanocomposite film surface. The error analysis was obtained by the standard deviation of at 

least five independent determinations.  

Permeation measurements were performed in a system that included a membrane cell 

connected to a tank with a calibrated volume (at the permeate side) and to a gas cylinder (at 

the feed side). Prior to permeation tests, the films were glued to steel O-rings with an epoxy 

glue (Araldite® Standard, Huntsman Advanced Materials, Basel, Switzerland); the glue was 

also applied along the interface of the steel O-ring and the film, as described elsewhere.43 A 

sintered metal disc covered with a filter paper was used as support for the film in the test 

cell. Single gases were tested at 30 ºC, where the feed pressure was 1 bar and the permeate 

pressure was ca. 0.03 bar. The tests were performed in a standard pressure-rise setup using 

an acquisition program based on LabView® platform (National Instruments, Austin, TX, 

USA). The permeability towards a pure component i was determined accordingly to: 𝐿𝑖 =

𝐹𝑖

∆𝑃𝑖 𝑙⁄
, where 𝐹𝑖 is the flux of species I, ∆𝑃𝑖  is the partial pressure difference of species 

between the two sides of the membrane, and 𝑙 is the film thickness. The permeability to the 

pure component was computed from the experimental data as follows: 𝐿𝑖 =
𝑙𝑉𝑝𝑣𝑀

𝑅𝑇𝐴(𝑃𝑓−𝑃𝑝)
 
∆𝑃𝑝

∆𝑡
, 

where 𝑉𝑝 is the volume of the permeate tank, 𝑣𝑀 is the molar volume of the gas at normal 

conditions, R is the gas constant, T is the absolute temperature, t is the time, A is the effective 

permeating area of the film, and 𝑃𝑓 and 𝑃𝑝 are the feed pressure and permeate pressure, 

respectively, and ∆𝑃𝑝 is the permeate pressure increment for the elapsed time ∆𝑡. 

 

3. Results 

3.1. From furanoate-glycolate copolyesters to acetylated bacterial cellulose-based 

nanocomposites 

A series of Ac-BC/PBF-co-PBDGs, Ac-BC/PBF, and Ac-BC/PBDG nanocomposites 

were developed for the first time following a three-step procedure (Scheme 1). 
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Scheme 1. The Ac-BC/PBF-co-PBDG composite preparation approach. 

 

In the first step, the (co)polyesters were prepared by a conventional bulk 

polyesterification approach.18,41 These (co)polyesters spanned from the neat PBF to neat 

PBDG, and encompassed their copolyesters with different relative furanoate/digycolate 

amounts (90/10, 75/25, and the never reported 50/50, 25/75, and 10/90 mol %). The selection 

of these (co)polyesters was based on their promising properties, notably biodegradability 

and high elongation at break,29 and aiming to further improve their mechanical properties. 

In the second step, heterogeneous acetylation of the BC fibres were performed using 

acetic anhydride. The degree of acetylation (DS) of the Ac-BC was determined using 

elemental analysis, by the Vaca-Garcia et al.42 approach, and the resulting value was 0.87. 

In the third step, nanocomposite films of each (co)polyester and Ac-BC were obtained by 

solvent-casting aiming to obtain novel nanomaterials with enhanced mechanical properties. 

Importantly, this approach could be generally applied to other furanoate thermoplastics as a 

strategy to improve their mechanical performance, namely to recycled PEF. Recycled 

thermoplastics lose some of their high-performance mechanical properties, mostly due to a 

reduction of the molecular weight. However, compounding these thermoplastics with the 

Ac-BC nanofibres could play a reinforcing role. 

The relative amount of (co)polyester/Ac-BC used in this work in the nanocomposites 

preparation was approximately equal to 70/30 wt %, based on the fact that a minimum of 30 

wt % of Ac-BC was required to form the films. For comparison reasons, films of each 

individual component of the nanocomposites were additionally prepared. Pure Ac-Bc 



 
Chapter V – Furanoate-Based Nanocomposites: A Case Study Using Poly(Butylene 2,5-Furanoate) and 

Poly(Butylene 2,5-Furanoate)-co-(Butylene Diglycolate) and Bacterial Cellulose 

139 

 

generates a white thin film, but the neat copolyesters did not form films by solvent-casting; 

in fact, this was consistent with the fact that a minimum of 30 wt % of Ac-BC was needed 

in order to obtain the nanocomposites films. 

For comparison reasons, nanocomposites of non-acetylated BC/PBF-co-PBDGs were 

also prepared following a similar approach. However, these materials were shown to be very 

heterogeneous; hence they were not further investigated. On the contrary the nanocomposite 

materials prepared using the Ac-BC fibres were homogeneous and translucent, indicating a 

good dispersion of the modified BC in the thermoplastic polymeric matrices. 

 

3.2. Structure and morphology  

The starting (co)polymers components were studied 1H and 13C NMR analysis. The main 

results are recorded in the Supplementary data (Figure S1, and also Tables S1 and S2), and 

were consistent with previously published data.29 One important aspect studied, due to the 

influence on the final properties of the (co)polyesters and consequently also on the related 

nanocomposites, were the assessment of the real furanoate/diglycolate incorporation (Table 

S2). Results indicated a trend towards incorporating slightly more diglycolate moieties in 

the copolymer back-bone than in the initial feed ratio, except for PBF-co-PBDG-50/50 

copolyester (7 mol % higher than expected). 

All furanoate-based nanocomposites and corresponding components (Ac-BC, PBF-co-

PBDG, PBF, and PBDG polyesters) were also thoroughly characterised by means of ATR 

FTIR spectroscopy (Figure 5.1 and Figures S2–S4 of Supplementary data). 

The Ac-BC/PBF-co-PBDG nanocomposites displayed the typical vibration modes of 

furanoate-based polyesters44 and in particular of PBF-co-PBDGs: two week bands centred 

at 3150 and 3115 cm-1 arising from the symmetrical and asymmetrical C–H stretching of the 

furanic ring (νsym = C–Hring and νasym = C–Hring), two other weak bands near 2962 and 2890 

cm-1 arising from the symmetrical and asymmetrical C–H stretching characteristics of the 

methylene groups of the BD and diglycolate moieties (νsym C–H and νasym C–H), and a very 

intense band centred at 1720 cm-1, arising from the carbonyl stretching vibration, typical of 

ester groups (ν C=O). 

In addition, these spectra also showed a band near 1506 cm-1, assigned to both the C=C 

stretching and CH2 in plane deformation (ν C=C, δ CH2, respectively), a band near 1263 
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cm−1 arising from the νasym C–O–C stretching, and several vibrations in the finger print region 

related to the 2,5-disubstitued ring. 

 

 
Figure 5.1. Attenuated total reflectance Fourier transform infrared (ATR FTIR) spectra of 

Ac-BC/PBF-co-PBDG-50/50 nanocomposite and corresponding Ac-BC and PFB-co-

PBDG-50/50 components. 

 

The vibrational modes of acetylated BC and those of the polyesters were partially 

overlapped, as can be confirmed by inspection of the corresponding spectra of Figure 5.1. 

However, a distinct feature of the nanocomposites spectra due to the cellulose incorporation 

was the broad band detected near the 3351 cm-1 characteristics of the ν O–H. All of the 

characteristic vibrational features of Ac-BC and BC precursors are summarised in the 

Supplementary data (Figure S2). 

With regards to the morphology, SEM micrographs of the nanocomposites with higher 

content of diglycolate units (≥50 mol %), collected at different magnifications (Figure 5.2 

and Figure S5 of Supplementary data), showed a smoother and uniform surface for those 

nanocomposites prepared from the high diglycolate quantities, thus indicating enhanced 

compatibility between the fibres and those polymeric matrices. 
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Figure 5.2. Surface (top) and cross-section (bottom) SEM micrographs of Ac-BC film and 

of selected nanocomposite films. 

 

From this perspective, the amount of Ac-BC used (around 30 wt %) and the 

heterogeneous acetylation of the cellulose fibres carried out in order to increase the cellulose 

hydrophobicity (DS ≈ 0.87) and, thus, the compatibility between the modified fibres and the 

polyesters, was shown to be an adequate approach for obtaining homogeneous 

nanocomposites, especially in the case of Ac-Bc/PBF-co-PBDG-10/90 and -25/75, and Ac-

BC/PBDG. A more extensive acetylation of the fibres could, in principle, increase the 

compatibility of the more hydrophobic furanoate polyesters (such as, PBF, PBF-co-PBDG-

90/10),29 but this would also have disrupted the characteristic BC nanostructure and thus 

would have extensively affected the properties of the ensuing materials. Another, possibility, 

worth considering in future work, will be the addition of an extra compatibility agent, or 

even a plasticiser acting also as a compatibility agent. Nevertheless, this would have brought 

an extra complexity to the data interpretation of the nanocomposite-systems, deviating from 

the present study as a more in-depth analysis of the basic principles governing 

cellulose/PBF-co-PBDG properties. 
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It is evident from the cross-section pictures (Figure 5.2 and Figure S5 of Supplementary 

data), the presence of Ac-BC nanofibres embedded within the polymeric matrix. Further, 

these results confirmed that the interfacial adhesion between the Ac-BC fibres and the 

polymeric matrices was particularly good for the high diglycolate content polyesters, namely 

PBF-co-PBDG-10/90, -25/75, and PBDG. 

The nanocomposite hydrophobicity was evaluated through water contact angle (CAwater) 

measurements at several points in time for 40 s after the water droplet deposition. The main 

results are displayed in Figure 5.3 and summarised in Table S3 of Supplementary data. 

 

 
Figure 5.3. Water contact angles at (a) 0 and (b) 15 s. 

 

The CAwater decreased drastically over the initial 5 s, and then roughly maintained 

constant. This behaviour was due to the initial re-orientation of the functional groups at 

surface of the films, allowing the water drops to spread more easily.45 Among different 

nanocomposites, the CAwater, after 15 s, increased with the increasing furanoate content in 

the copolyester (from 45 to 100º), mostly due to the hydrophobic character of the furanoate-

based polyesters.41 The Ac-BC film showed an intermediate CAwater of approximately 67.9º 

after 15 s, in accordance with nanofibre affinity to the polyesters, and consequently good 

dispersion in the thermoplastic matrices, especially PBF-co-PBDG-50/50 to -10/90, and 

PBDG. The wide range of water contact angles covered by these nanomaterials, from highly 

hydrophobic (ca. 100.57º) to moderate hydrophilic (ca. 44.81º) was an interesting feature 

worth exploiting in different applications, such as, for example in packaging29 or textiles. 
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3.3. Crystallinity and thermal behaviour 

The nature of the crystalline domains of the nanocomposites prepared with a wide range 

of furanoate/diglycolate copolyesters and with Ac-BC fibers was evaluated by XRD (Figure 

5.4 and Figure S6 of Supplementary Materials). 

 

 

Figure 5.4. X-Ray diffractograms of: (a) Ac-BC/PBF-co-PBDG-90/10 nanocomposite film 

and corresponding Ac-BC film and PBF-co-PBDG-90/10 components, and (b) Ac-BC/PBF-

co-PBDG-10/90 nanocomposite film and corresponding Ac-BC film and PBF-co-PBDG-

10/90 components. 

 

The nanocomposites prepared with the copolyesters containing a higher amount of 

furanoate moieties (i.e., PBF-co-PBDG-90/10 to 50/50) roughly displayed the typical 

diffraction pattern of PBF, with strong reflections at 2θ ≈ 18 and 25º, and smaller peaks at 

2θ ≈ 10 and 22º.8 In the case of the diffractogram of the nanocomposite prepared with the 

copolyester containing the lowest amount of furanoate moieties (Ac-BC/PBF-co-PBDG-

10/90), the main peaks observed were those typical of PBDG precursors, viz: 2θ ≈ 14, 19, 

22, 24, 26, and 27º.29 These results allowed one to associate the crystalline domain of Ac-

BC/PBF-co-PBDG-90/10, 75/25, and 50/50 nanocomposites to PBF, whereas in the case of 

Ac-BC/PBF-co-PBDG-10/90, it was essentially related to PBDG. In addition, the XRD 

diffraction patterns of the nanocomposite films were all naturally related with the 

copolyesters counterparts (in the form of powder), despite some differences in the sharpness 

of the reflection peaks, as easily attested by comparing both (Figure S6 of Supplementary 
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data). These results could be associated with the incorporation of Ac-BC fibres into the 

polymeric matrix and/or due to solvent casting film formation conditions. 

In the particular case of Ac-BC/PBF-co-PBDG-25/75, a more pronounced effect was 

noted; indeed this nanocomposite was amorphous, displaying accordingly on its 

diffractogram a pronounced amorphous halo cantered at 22º, despite its precursor displaying 

some crystallinity (see Figure S6 of Supplementary Materials). 

Importantly, the thermal and mechanical behaviour of all nanocomposites were 

influenced by their degree of crystallinity and also by the nature of this domain, as discussed 

below. 

All Ac-BC/PBF-co-PBDG nanocomposites and the corresponding individual 

components precursors were further characterised in terms of their thermal behaviour 

through DSC and TGA analyses (Table 5.1, Figure 5.5 and, Table S4 and Figures S7–S9 of 

Supplementary Materials). 

 

Table 5.1. Important thermal values obtained from differential scanning calorimetry (DSC) 

and thermogravimetric analysis (TGA) analyses. 

Sample Tcc 1/ ºC Tg 1/ ºC Tm 1/ ºC1 Td, 5% 2/ ºC Td,max 2/ ºC 

Ac-BC/PBF 86.5 46.1 173.5 323.8 354.7; 384.2 

Ac-BC/PBDG - −24.9 66.1 3 284.0 362.1; 384.0 

Ac-BC/PBF-co-PBDG- 

90/10 76.3 25.8 162.9 305.8 354.9; 383.0 

75/25 60.3 15.2 144.8 300.2 353.9; 376.6 

50/50 - −1.8 94.6 297.9 348.2; 380.7 

25/75 - −12.6 - 238.8 362.3; 378.6 

10/90 - −20.4 61.4 3 293.6 359.8; 384.8 
1 Determined by DSC from the second heating scan at 10 °C min-1. 2 Determined by TGA at 20 °C min-1. 3 

Determined by DSC from the first heating scan at 10 °C min-1. 

 

The DSC traces of the nanocomposites (Table 5.1 and Figure 5.5) were in accordance 

with the semi-crystalline nature of the nanocomposites or instead with the amorphous 

character of one of these materials, as XRD results indicated. Therefore, the DSC traces of 

Ac-BC/PBF, Ac-BC/PBF-co-PBDG-90/10, -50/50 and -10/90, and Ac-Bc/PBDG displayed 

a glass transition (Tg), followed by a melting (Tm) event at -24.9 to 46.1 ºC, and 61.4 to 173.5 

ºC, respectively. An additional cold crystallisation (Tcc) event was also observed after the Tg 

in the cases of Ac-BC/PBF, PBF-co-PBDG-90/10 and -75/25, which might be associated to 

an additional nucleation effect of Ac-BC fibres.46 The corresponding traces of neat PBF and 
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PBF-co-PBDG-90/10 (co)polyesters (Figure S7 and Table S4 of Supplementary Material) 

did not showed a cold crystallisation event. 

 

 
Figure 5.5. DSC traces of the nanocomposites and Ac-BC. 

 

In regard to Ac-BC/PBF-co-PBDG-25/75, the corresponding thermogram displayed only 

a step in the baseline at ca. -12.6 ºC, attributed to the glass transition temperature, due to its 

essentially amorphous nature, in agreement with the XRD results. 

For all nanocomposites, Tg decreased (around 13 ºC) with an increased amount of 

diglycolate units in the copolyester. In the same vein, the Tm of the nanocomposites also 

decreased from 173.5 to 61.4 ºC with an increasing amount of soft diglycolate segments. 

This trend was also observed in the case of neat (co)polyesters prepared in this work (Table 

S4 of Supplementary Material) and reported elsewhere.29 

In addition, the Tg of the nanocomposite films tended to be higher than those obtained for 

the corresponding (co)polyester component, in agreement with the higher stiffness of the 

nanocomposites. For example, Ac-Bc/PBF-co-PBDG-75/25 had a Tg of 25.6 ºC, whereas the 

same parameter for PBF-co-PBDG-75/25 was 13.8 ºC. In regard to the Tm, the 

nanocomposites (Table 5.1) and the corresponding copolyesters synthesised in this work 



 
Chapter V – Furanoate-Based Nanocomposites: A Case Study Using Poly(Butylene 2,5-Furanoate) and 

Poly(Butylene 2,5-Furanoate)-co-(Butylene Diglycolate) and Bacterial Cellulose 

146 

 

(Table S4 of Supplementary Material) had very similar results, but they were higher than 

literature values.29 

The typical TGA thermograms of the newly prepared furanoate nanocomposites (Table 

5.1 and Figure S9 of Supplementary Material) displayed two major characteristic steps at 

maximum decomposition temperatures (Td,max) of 348–362 ºC and 376–385 ºC. The first step 

was due to the Ac-BC decomposition and was quite close to that observed for the neat Ac-

BC fibres (363.0 ºC) and comparable to previously reported results.39 The other 

decomposition step was associated with the polyesters enriched fraction and was observed 

at higher temperatures than the related polyester precursor. For example, in the case of Ac-

BC/PBF-co-PBDG-50/50 the second Td,max was equal to 380.7 ºC, whereas the same 

parameter was equal to 365.1 ºC for the PBF-co-PBDG-50/50 copolyester. These results 

were comparable to those reported for other nanocomposites of Ac-BC and poly(lactic 

acid).39 

The nanocomposites were thermally stable up to 238–306 ºC (Table 5.1), indicating a 

decrease of the stability compared to the related polyesters (360–380 ºC) (Table S4 of 

Supplementary Materials). The same effect was previously reported with PEF/cellulose 

materials.31 Additionally, one can notice, on both nanocomposites and the corresponding 

polyester component, an increase of the Td,5% with the amount of furanoate incorporated into 

the polymeric matrix backbone. These thermal features enabled the establishment a 

maximum working temperature of up to 306 ºC for the novel nanocomposites. 

 

3.4. Mechanical properties and permeability assays for oxygen  

Tensile tests were performed to assess the mechanical performance of these novel 

furanoate-based nanocomposites and in particular to evaluate the effect of compounding 

cellulose nanofibres (Ac-BC) with PBF-co-PBDG copolyesters. The stress-strain behaviour 

of Ac-BC/PBF-co-PBDGs was revealed to be dependent on a complex interplay of factors, 

namely the chemical composition of the related (co)polyesters and the presence of 

nanofibres, as well as the crystallinity of the new materials. The main results are displayed 

in Figure 5.6 and summarised in Table S5. 
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Figure 5.6. (a) Young’s modulus, (b) tensile strength and (c) elongation at break of the 

nanocomposites and of the Ac-BC component. 
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Ac-BC/PBF-co-PBDG-90/10 exhibited the highest Young’s modulus, approximately 

1239.3 MPa, in accordance with this nanocomposite having the highest amount of rigid 

furanoate moieties. This result was significantly higher than that previous reported to the 

related film of the neat copolyester (ca. 373 MPa).29 The cellulose fibres played here a 

reinforcing role in the nanocomposites, as well as due to the higher crystallinity of the 

copolyester prepared in this work, thus explaining the Young’s modulus increase. 

Importantly, the Young’s modulus of Ac-BC/PBF-co-PBDG-90/10 (ca. 1239.3 MPa) was 

very close to that routinely reported for PBF,11,24,29 and also very near to neat Ac-BC film 

(ca. 1172.8 MPa). This was a very interesting result because this nanocomposite had good 

mechanical properties, comparable to those of PBF; but had the advantage of being 

biodegradable oppositely to PBF.29 

The other nanocomposites showed lower Young’s modulus (ca. 499.9–30.3 MPa), 

decreasing with decreasing amounts of furanoate units from 75/25 to 25/75, but slightly 

increasing again to Ac-BC/PBF-co-PBDG-10/90 and PBDG. This inverted bell-shape trend 

behaviour for the first decreasing trend was in agreement with the decrease of stiff furanoate 

moieties; and for the second increasing trend it was most probably associated with an 

increase in crystallinity as prompted by the substantial amount of diglycolate segments, and 

thus a lower degree of randomness (as well as disclosed by XRD analysis). In addition, the 

nanocomposites Young’s modulus results were typically much higher than those reported 

for the neat copolyesters films produced by Soccio et al.29 due to the expectable reinforcing 

role of the cellulose fibres,39 and due to a higher crystallinity of the herein prepared 

nanocomposites. 

In terms of elongation at break, the nanocomposites prepared from copolyesters with 

higher amounts of diglycolate moieties displayed higher elongations due to the soft nature 

of these segments. The highest result was obtained with Ac-BC/PBF-co-PBDG-25/75 (ca. 

25.02%). Despite this composite having a huge gain in elasticity, especially compared to 

cellulose fibres, the elongation at break was still lower than those of neat copolyesters.29 

The nanocomposites barrier properties were evaluated in terms of permeability to oxygen, 

and preliminary results indicated that the nanocomposites and the corresponding 

(co)polyesters films prepared elsewhere29 had similar permeabilities towards oxygen. Ac-

BC/PBF-co-PBDG-90/10 showed to have a permeability to O2 that was equal to 3.49 × 102 

Barrer, whereas Ac-BC had 1.75 × 105, in accordance with the well-documented44,47 superior 
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barrier properties of furanoate-based polymers. These were attractive properties worth 

exploiting for applications within packaging. 

 

4. Conclusions  

Furanoate-based (nano)composites using bacterial nano-cellulose was here reported for 

the first time, revealing great potential to broaden the properties of this material. In the 

present case study involving Ac-BC/PBF and Ac-BC/PBF-co-PBDGs nanocomposites, they 

were shown to have high stiffness (evaluated by the Young’s modulus, from 30.3 to 1239 

MPa) compared to the neat (co)polyesters counterparts. Concomitantly, these 

nanocomposites still displayed reasonable elasticity (elongation at break) compared e.g., to 

cellulose or PBF. These properties were only possible by judiciously tailoring the 

composition of the nanocomposites, especially the critical diglycolate/furanoate amount in 

the copolyester, as well as by compounding the (co)polyesters with acetylated cellulose 

(tailoring crystallinity, homogeneity, among other properties). Moreover, the permeabilities 

to oxygen results were quite attractive, being in the order of magnitude of PBF, justifying 

further exploitation of these nanocomposites for applications within packaging.  
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Supplementary Materials 

 

Scheme S1. Chemical structures of the triad units of the PBF-co-PBDG copolyesters. 

 

 

Figure S1. 1H NMR spectra in TFA-d of PBF-co-PBDG copolyesters and related PBF and 

PBDG homopolyesters. 
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Table S1. Main 1H NMR resonances of PBF-co-PBDG copolyesters and related PBF and 

PBDG homopolyesters. 

δ / ppm assignment triads 

integration area 

PBF 

PBF-co-PBDG- 

PBDG 
90/1

0 
75/25 50/50 25/75 10/90 

7.30 f; CH (FDCA) 
F-BD-F; 

F-BD-DG 
1.00 1.00 1.00 1.00 1.00 1.00 – 

4.50 a4; OCH2 (BD) F-BD-F 2.00 1.85 1.72 1.52 1.60 2.13 – 

4.45 a2, a3;OCH2 (BD) F-BD-DG – 0.31 0.85 1.16 3.89 13.80 – 

4.36 c; CH2OCH2 (DGA) DG-BD-DG – 0.32 0.76 1.51 6.75 43.67 1.00 

4.30 a1; OCH2 (BD) DG-BD-DG – 0.06 0.18 0.56 4.97 38.27 1.00 

1.90 b4; OCH2CH2 (BD) F-BD-F 2.01 1.86 1.72 1.52 1.60 1.90 – 

1.83 b2, b3; OCH2CH2 (BD) F-BD-DG – 0.33 0.85 1.29 3.93 11.89 – 

1.80 b1; OCH2CH2 (BD) DG-BD-DG – 0.05 0.13 0.59 4.94 38.76 1.01 

 

 

Table S2. Comparison between the initial molar feed percentage and the real molar 

percentage of furanoate and diglycolate moieties. 

 

 

 

 

 

 

 

 

(co)polymer 
F/DGfeed 

(mol%) 

F/DG 

(mol%) 

PBF 100/0 100.0/0 

PBF-co-PBDG-   

90/10 90/10 86.2/13.8 

75/25 75/25 72.5/27.5 

50/50 50/50 57.0/43.0 

25/75 25/75 22.9/77.1 

10/90 10/90 4.4/95.6 

PBDG 0/100 0/100.0 
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Figure S2. ATR FTIR spectra of the acetylated bacterial cellulose (Ac-BC) and of the 

unmodified bacterial cellulose (BC) fibres. 

 

 

Figure S3. ATR FTIR spectra of PBF-co-PBDG copolyesters and of PBF and PBDG related 

homopolyesters. 
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Figure S4. ATR FTIR spectra of all Ac-BC/PBF-64 co-PBDG nanocomposites. 
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Figure S5. SEM micrographs of Ac-BC film and of the nanocomposites of the (a) surface 

(500 x and 5.0 kx) and 69 (b) cross-section (800 x and 5.0 kx). 

 

Table S3. Water contact angles of the composites films measured at several points in time 

for 40 s. 

Sample 

CAwater / ° 

time / s 

0  5  10  15  20  25  30  40 

Ac-BC 
82.10 ± 

1.93 
 71.09 ± 

2.34 
 69.22 ± 

3.05 
 67.93 ± 

3.33 
 67.45 ± 

3.03 
 66.83 ± 

3.32 
 66.48 ± 

3.42 
 65.97 ± 

3.60 

Ac-BC/PBF 
116.40 ± 

2.11 
 102.43 ± 

5.03 
 101.96 ± 

4.52 
 100.57 ± 

5.37 
 98.14 ± 

4.36 
 97.37 ± 

4.05 
 96.89 ± 

3.84 
 96.45 ± 

4.04 
Ac-BC/PBF-co-PBDG-

90/10 
105.10 ± 

0.77 
 87.36 ± 

2.41 
 83.01 ± 

3.30 
 82.84 ± 

3.30 
 82.41 ± 

3.25 
 82.44 ± 

3.59 
 82.04 ± 

3.62 
 81.67 ± 

3.57 
Ac-BC/PBF-co-PBDG-

75/25 
101.85 ± 

2.08 
 85.47 ± 

3.87 
 78.85 ± 

3.51 
 77.40 ± 

3.70 
 75.97 ± 

3.82 
 73.96 ± 

3.62 
 73.61 ± 

3.26 
 72.28 ± 

3.82 
Ac-BC/PBF-co-PBDG-

50/50 
86.97 ± 

2.49 
 72.32 ± 

2.75 
 69.39 ± 

3.11 
 67.24 ± 

2.81 
 65.30 ± 

2.51 
 64.04 ± 

2.67 
 63.62 ± 

2.74 
 62.15 ± 

2.75 
Ac-BC/PBF-co-PBDG-

25/75 
74.29 ± 

1.37 
 53.56 ± 

3.82 
 50.50 ± 

3.45 
 48.82 ± 

3.15 
 47.46 ± 

2.34 
 46.85 ± 

2.21 
 46.26 ± 

2.05 
 45.10 ± 

1.66 
Ac-BC/PBF-co-PBDG-

10/90 
70.40 ± 

3.96 
 46.56 ± 

1.71 
 45.48 ± 

1.78 
 44.81 ± 

1.78 
 44.61 ± 

1.48 
 44.37 ± 

1.70 
 44.27 ± 

1.73 
 43.36 ± 

1.83 

Ac-BC/ PBDG 
73.65 ± 

1.67 
 54.04 ± 

4.32 
 49.84 ± 

2.73 
 48.18 ± 

2.06 
 47.57 ± 

1.37 
 46.74 ± 

1.79 
 46.69 ± 

1.95 
 45.96 ± 

1.92 
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Figure S6. X-Ray diffractograms of the (a) neat (co)polyesters and (b) corresponding 

nanocomposites. 
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Table S4. Important thermal values of the (co)polyesters and Ac-BC obtained by DSC and 

TGA analyses. 

sample Tg / ºC Tcc / ºC Tm / ºC Td, 5% / ºC Td / ºC 

PBF 46.1 - 173.9 348.7 380.5 

PBF-co-PBDG-  -    

90/10 25.1 - 161.7 328.6 368.4 

75/25 13.8 81.5 136.2 303.1 360.3 

50/50 -2.7 - 93.2 322.1 365.3 

25/75 -17.6 - 48.0 305.4 378.1 

10/90 -26.4 - 48.0 297.5 362.1 

PBDG -26.6 - 65.6 294.9 360.1 

Ac-BC - - - 278.2 363.0 

 

 

 

Figure S7. DSC traces of the PBF-co-PBDGs and related PBF and PBDG homopolyesters. 
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Figure S8. Thermogravimetric curves of the PBF-co-PBDGs and related PBF and PBDG 

homopolyesters: TGA (a) and (b) DTG. 
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Figure S9. Thermogravimetric curves of the nanocomposites and Ac-BC: TGA (a) and (b) 

DTG. 
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Table S5. Young’s modulus, elongation at breakage and tensile strength of the 

nanocomposites and of Ac-BC component. 

sample 1 

Young's 

modulus 

/ MPa 

Elongation 

at break 

(%) 

Tensile 

strength / 

MPa 

Ac-BC 1172.8 1.57 14.51 

Ac-BC/PBDG 499.8 8.85 11.05 

Ac-BC/PBF-co-PBDG-    

90/10 1239.3 0.62 7.62 

75/25 447.8 0.99 6.32 

50/50 360.2 7.19 7.36 

25/75 30.3 25.02 6.22 

10/90 374.4 7.28 8.07 
1 Ac-BC/PBF nanocomposite was not evaluated by tensile testing due to its 

brittle character, which broken easily precluding its test. 
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Abstract 

The worldwide regulatory demand for the elimination of non-phatalate compounds for 

poly(vinyl chloride) (PVC) plasticization has intensified the search for alternatives. 

Concomitantly, sustainability concerns have spotlighted the sugar-based 2,5-

furandicarboxylic acid as one key renewable-chemical for the development of several 

products, namely di(2-ethylhexyl) 2,5-furandicarboxylate (DEHF) plasticizer. This study 

addresses the use of DEHF as a plasticizer for PVC under a realistic scenario of co-existence 

of both fossil- and renewable-based plasticizers: i.e., PVC blends using mixtures of di(2-

ethylhexyl) terephthalate ester (DEHT) and DEHF. The detailed structural, thermal and 

mechanical characterization of these materials showed that they have a set of interesting 

properties, compatible to those of commercial DEHT, namely a low glass transition (19.2-

23.8 ºC) and enhanced elongation at break (up to 330%). Importantly, migration tests under 

different daily situations, such as for example exudation from food/beverages packages and 

medical blood bags, reveal very low weight loss percentages. For example, in both distilled 

water and PBS solution, weight loss does not exceed ca. 0.3% and 0.2%, respectively. 

Viability tests show, for the first time, that up to 500 μM of DEHF a fairly non-toxic profile 

is observed, as well as to DEHT. Overall, this study demonstrates that the combination of 

DEHF and DEHT plasticizers result in a noticeable plasticized PVC with an increase green 

content and with a benign profile. 

 

KEYWORDS 

Di(2-ethylhexyl) 2,5-furandicarboxylate; di(2-ethylhexyl) terephthalate; PVC sustainable 

plasticizers; renewable resources; benign plasticizers. 

 

1. Introduction 

Poly(vinyl chloride) (PVC) is one of the most widely used thermoplastic polymers in 

respect to the worldwide plastics’ consumption. In fact, according to a recent market study,1 

in 2016, over 42 million tons of PVC were consumed, corresponding to over 16% of total 

plastics demand, and it is continuously growing. PVC is routinely plasticized in order to 

increase its flexibility, workability or distensability,2,3 and thus, to decrease the melting (Tm) 
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and glass transition (Tg) temperatures, as well as, the elastic modulus, in order to meet the 

requirements of several applications in food/beverage packaging, dialysis bags, blood bags, 

tubing systems, children toys, among many others.4 Free plasticizers are relatively low 

molecular weight molecules that interact with PVC electrophilic C-Cl groups, mainly in the 

amorphous regions, reducing polymer-polymer chains interactions. The most used 

plasticizers were for decades esters of phthalic acid derivatives,5 mainly di(2-ethyl-1-hexyl) 

orthophthalate ester (DEHP or DOP). However, its use has raised several concerns 

associated to migration issues overtime and especially due to the severe adverse health 

effects (especially when it enters the blood stream).6 In fact DEHP has successively been 

banned in the EU, and consequently non-phthalate plasticizers have become more widely 

used (reference 7 and references therein). This is the case of di(2-ethylhexyl) terephthalate 

ester (DEHT), DEHP structural isomer but which is not associated to toxic effects.6 

However, both DEHP and DEHT plasticizers are derived from fossil resources. 

In recent years, motivated by sustainability awareness an increasing attention and concern 

on the massive use of petroleum-based products8 (including plasticizers) has called for a 

paradigm shift towards the development of renewable-based ones. In this vein, several 

alternatives to DEHT and toxic DEHP have been disclosed,9,10 namely tung oil-,11,12 

cardanol-,13,14 poly(caprolactone)-9 and poly(hexane succinate)-based10 plasticizers. 2,5-

Furandicarboxylic acid (FDCA) is a well-recognized sugar-based monomer, structurally 

related with terephthalic acid (TPA) and the precursor of several polyesters with thermal and 

mechanical properties very similar to those prepared from fossil-TPA.8,15 Moreover, unlike 

phthalates, furan compounds are easily metabolized and FDCA itself is a common human 

urinary metabolite.16 Therefore, its use in broader applications, including as a benign 

plasticizer, besides in polymer synthesis, is of upmost interest. However, there are only a 

few reports on this subject,17,18 specifically on the synthesis of di(2-ethylhexyl) 2,5-

furandicarboxylate (DEHF) and its use in PVC blends.17,18 The PVC-DEHF studied blends 

(between 10-50 phr of plasticizer) showed to have an elongation at break within 57-249% 

(slightly lower than DEHP), a Tg between 1-59 ºC; to be thermally stable up to 189-225oC; 

and the migration in hexane was at most around 9%. Despite these relatively promising 

mechanical and thermal performance some important properties, like DEHF cytotoxicity, 

migration studies using broader spectra of model solvents (including water), and the volatile 

resistance behavior remained unknown. Moreover, in a more realistic scenario, at the 
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industrial scale, the replacement of petroleum-based DEHT with renewable counterparts 

(e.g. DEHF) will be hampered due to relevant economic issues related to cost-

competitiveness. In this vein, the partial replacement of DEHT by DEHF is a logical 

approach worth exploring in order to increase the designated ‘green-content’.19 

Therefore, in this study different ratios of DEHF/DEHT were used to assess the 

progressive replacement of fossil-based DEHT by more sustainable DEHF in PVC 

formulations, and increase the compatibility/affinity of the mixture of plasticizers with the 

PVC matrix. These new PVC blends were characterized in detail using several structural, 

thermal and mechanical techniques, namely ATR FTIR, DRX, TGA, DMTA and tensile 

tests. Migration stability of the plasticizers was assessed, through chemical and volatile 

resistance tests. Further, the cytotoxicity of DEHF was evaluated, for the first time, in terms 

of cell viability tests in order to foresee its wide application as a benign PVC plasticizer. 

 

2. Experimental 

2.1. Materials 

2,5-Furandicarboxylic acid (>98%) was purchased from TCI Europe N.V. 2-Ethyl-1-

hexanol (≥99.6%), stearic acid (95%), anhydrous sodium sulfate (≥99.0%), zinc stearate 

purum and Dulbecco’s modified Eagle’s medium - high glucose (DMEM-HG) were supplied 

by Sigma Aldrich-chemicals Corp. Sulfuric acid (96%), sodium chloride (≥99.0%) and 

deuterated chloroform (99.8 % D) were acquired from Acros Organics. Chloroform and 

cyclohexane (HPLC grade) were purchased from Fisher Scientific and Panreac Applichem, 

respectively. Activated carbon (granules with density of 2 g/cm3) was obtained by VWR 

Chemicals. Di(2-ethyl-1-hexyl) 1,4-terephthalate (DEHP) (DOTP- 168 Eastman) was 

supplied by Eastman Chemical Company and PVC resin (VICIR S1200; K-Fikentscher 

value of 70 corresponding to number-average molecular weight equal to 59 000 and a 

polydispersity of 1.97)20 was provided from CIRES, Lda. (Portugal). All chemicals were 

used as received, without further purification. 

 

 

 

 



 

Chapter VI – Replacing fossil-based di(2-ethylhexyl) terephthalate by sugar-based di(2-ethylhexyl) 2,5-

furandicarboxylate for benign PVC plasticization: synthesis, materials preparation and 

characterization 

174 

 

2.2. Synthesis of di(2-ethyl-1-hexyl) 2,5-furandicarboxylate (DEHF) 

In this study DEHF was synthesized via Fisher esterification following an adapted 

procedure described elsewhere.21,22 Briefly, 5.0 g of FDCA (32.0 mmol) and 25.0 g of 2-

ethyl-1-hexanol (192.2 mmol) (diacid:diol, 1:6 mol/mol) were reacted in the presence of 

concentrated sulfuric acid (1 wt%, total diacid weight) and kept at 160 ºC for 6 h. The 

resulting reaction product was washed with an aqueous NaCl solution (30% m/v) until it 

reached pH 7, and then extracted with chloroform. The extracted DEHF was dried and 

weighted. DEHF was isolated as a light-yellow liquid at room temperature in 94 % yield. 

The purity and molecular structure of the isolated compound was also confirmed by ATR 

FTIR (Figure S1), NMR (Figure S2 and S3) and GC-MS analyses (Figure S4) and was in 

accordance with previously reported data.18 ATR FTIR (ν/cm-1): 3126 (=C–H); 2957, 2927 

and 2859 (υ C–H, methylene and methyl groups); 1719 (C=O); 1581 (C=C); 1461, 1380, 

1271 and 1220 (C–O); 1017 (furan ring breathing); 968, 822 and 764 (2,5-dibustituted furan 

ring) (Figure S1). 1H NMR (300 MHz, CDCl3, δ, ppm): 7.20 (s, 2H, H3,H4), 4.25-4.28 (2d, 

4H, H6), 1.69-1.77 (m, 2H, H7), 1.30-1.50 (m, 16H, H10, H11, H12), 0.92-0.98 (2t,12H, 

H9, H13) (Figure S2). 13C NMR (75 MHz, CDCl3, δ, ppm): 158.3 (2,5- C=O); 147.0 

(C2/C5); 118.1 (C3/C4); 67.9 (C6); 38.8 (C7); 30.3 (C10); 28.9 (C11); 23.8 (C8); 22.9 

(C12); 14.0 (C13); 11.0 (C9) (Figure S3). MS (EI) m/z (relative intensity %): 380 [M] ∙
+ (1), 

269 (17), 251 (14), 223 (5), 157 (100), 112 (31), 70 (35), 57 (9) (Figure S4). 

 

2.3. Preparation of the PVC-DEHF/DEHT films 

Plasticized PVC films (Table 6.1) were prepared by pre-mixing PVC-K70 resin (40.0 g), 

stearic acid (0.3 per hundred resin (phr)), zinc stearate (1 phr) and a mixture of DEHP/DEHF 

plasticizers in different relative amounts (Table 6.1) for ca. 5 min and vigorously hand-

stirring. Subsequently, the ensuing mixtures were allowed to rest for 30 min, and after that 

period they were mixed using a two-roll mild (Collin machine type W-150P), at 140 ºC and 

1600 rpm for 5 min. The mixtures were compression-molded (Carver press Model 3851) 

using a steel mold (110 mm × 110 mm × 2 mm) and heated until reaching 140 ºC and after 

standing for 2 min pressed at 28 tons until a thickness of 2 mm was reached, and finally 

depressed, and fast cooled to room temperature. 
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Table 6.1. Compositions of the different PVC-DEHF/DEHT formulations prepared. 

Components 

Formulations 

Pure PVC PVC1 PVC2 PVC3 PVC4 PVC5 

Amount / g 

PVC resin -K70 
40.0 

(100 phra) 

40.0 

(100 phr) 

40.0 

(100 phr) 

40.0 

(100 phr) 

40.0 

(100 phr) 

40.0 

(100 phr) 

DEHT - 
22.0 

(55 phr) 

20.0 

(50 phr) 

18.0 

(45 phr) 

16.0 

(40 phr) 

14.0 

(35 phr) 

DEHF - 
0.0 

(0 phr) 

2.0 

(5 phr) 

4.0 

(10 phr) 

6.0 

(15 phr) 

8.0 

(20 phr) 

Stearic acid - 
0.12 

(0.3 phr) 

0.12 

(0.3 phr) 

0.12 

(0.3 phr) 

0.12 

(0.3 phr) 

0.12 

(0.3 phr) 

Zinc stearate - 
0.40 

(1.0 phr) 

0.40 

(1.0 phr) 

0.40 

(1.0 phr) 

0.40 

(1.0 phr) 

0.40 

(1.0 phr) 
aphr- per hundred resin 

 

2.4. Characterization techniques 

Viscosity and density of DEHF plasticizer were measured using an automated SVM 3000 

Anton Paar rotational Stabinger viscometer-densimeter, at atmospheric pressure, within the 

temperatures range of 293.15 to 323.15 K ± 0.02 K. 

Attenuated total reflectance Fourier transform infrared (ATR FTIR) spectra were 

obtained using a PARAGON 1000 Perkin-Elmer FTIR spectrometer equipped with a single-

horizontal Golden Gate ATR cell. The spectra were recorded after 128 scans, at a resolution 

of 4 cm-1, within the range of 500 to 4000 cm-1. The ATR FTIR spectra of all samples were 

normalized relatively to the vibrational peak at 2953 cm-1. 

1H and 13C NMR spectra were recorded using a Bruker AMX 300 spectrometer, operating 

at 300 or 75 MHz, respectively. All chemical shifts (δ) were expressed as parts per million, 

downfield from tetramethylsilane (used as the internal standard). 

Gas chromatography-mass spectrometry (GC-MS) analyses were performed using a 

Trace gas chromatograph (2000 series) equipped with a Thermo Scientific DSQ II mass 

spectrometer (Waltham, MA). Separation of compounds was carried out in a DB-1 J&W 

capillary column (30 m × 0.32 mm inner diameter, 0.25 μm film thickness) using helium as 

the carrier gas (35 cm s-1). The chromatographic conditions were as follows: initial 

temperature equal to 80 °C for 5 min; then temperature raised up to 260 °C at a temperature 

rate of 4 °C min-1; and finally up to 285 °C, at 2 °C min-1 and maintained for 8 min. the 

injector temperature was 250 °C; transfer-line temperature equal to 290 °C; and split ratio 

of 1:33. The mass spectrometer was operated in the electron impact (EI) mode with an energy 
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of 70 eV, and data were collected at a rate of 1 scan s-1 over a range of m/z 33–700. The ion 

source was kept at 250 °C. The sample was prepared dissolving DEHF in chloroform (1 

mg/mL). 

X-ray diffraction (XRD) analyses were performed using a Philips X’pert MPD 

diffractometer operating with CuKα radiation (λ = 1.5405980 Å) at 40 kV and 50 mA. 

Samples were scanned in the 2θ range of 5 to 50°, with a step size of 0.04°, and time per step 

of 50 s. 

Thermogravimetric analysis (TGA) were carried out with a Setaram SETSYS analyzer 

equipped with an alumina plate. Thermograms were recorded under a nitrogen flow of 20 

mL min-1 and heated at a constant rate of 10 °C min-1 from room temperature up to 800 °C. 

Thermal decomposition temperatures were taken at the onset of significant weight loss 

(≥5%) and at maximum decomposition temperatures from the heated samples (Td,5% and Td, 

respectively). 

Dynamic mechanical thermal analyses (DMTA) were performed with a Tritec 2000 DMA 

Triton, operating in tension mode, except for pure PVC, for which a material pocket 

accessory was used, operating in the single cantilever mode. Tests were performed at 1 and 

10 Hz and the temperature was varied from -100 to 150 ºC, at 2 ºC min-1. The glass transition 

temperature (Tg) was determined as the maximum peak value of tan δ.  

Tensile tests were obtained with an Instron 5564 tensile testing machine at a cross-head 

speed of 10 mm min-1 using a 500 N static load cell. The tensile test specimens were 

rectangular strips (50 mm × 10 mm × 2 mm) pre-conditioned for 72 h at 25 °C. Each 

measurement was repeated at least five times. 

The chemical resistance tests were performed in agreement with the Standard Test 

Method ASTM D 1239-98.23 PVC-DEHF/DEHT specimens (10 mm × 10 mm × 2 mm) were 

pre-conditioned at 23 ± 2ºC with a humidity of 50 ± 5 %, for 24 h. After this period, the 

specimens were immerged in 10 ml of the chosen solvent (distilled water, sodium phosphate 

buffer at pH~ 7, or cyclohexane), at 23 ± 2ºC for 48 h. The films were then removed from 

the liquid, washed thoroughly with distilled water and dried. Each measurement was 

repeated at least three times. The weight loss percentage was calculated using the expression: 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑙𝑜𝑠𝑠 (%) =
𝑊𝑖−𝑊𝑓

𝑊𝑖
× 100 where, Wi and Wf stand for the specimen weights prior 

and after chemical resistance tests, respectively. 
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Volatile resistance tests were performed according to the international standard ISO 176-

2005,24 to determine the loss of plasticizers through the activated carbon method. PVC-

DEHF/DEHT specimens (10 mm ×10 mm × 2 mm) were placed on the center of activated 

carbon at 40 ºC for 48 h. After this period, samples were washed with distillate water and 

dried. Each measurement was repeated at least three times. The weight loss was determined 

using the same equation represented above. 

 

2.5. Citotoxicity assays 

The cytotoxicity of the plasticizers was evaluated in the 3T3-L1 cell line acquired from 

ATCC. For this purpose, 35 × 103 3T3-L1 cells were seeded onto 48-well culture plate, 24 

h prior to incubation with the compounds (cells were used at 70% confluence). Then, cells 

were incubated with different concentrations of the plasticizers for 48 and 72 h, and the cell 

viability was assessed by a modified Alamar Blue assay.25 This assay measures the redox 

capacity of the cells due to the production of metabolites as a result of cell growth. Briefly, 

the cell culture medium of each well was replaced with 0.3 mL of DMEM-HG containing 

10% (v/v) of Alamar Blue (0.1 mg/mL in PBS) and, after 1 h of incubation at 37 °C, 170 μL 

of the supernatant were collected from each well and transferred to 96-well plates. The 

absorbance was measured at 570 and 600 nm in a SPECTRAmax PLUS 384 

spectrophotometer (Molecular Devices, Union City, CA). Cell viability was calculated as a 

percentage of the control cells (cells not treated with the plasticizers) according to the ratio: 

(𝐴570 − 𝐴600)𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 (𝐴570 − 𝐴600)𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑒𝑙𝑙𝑠⁄ × 100. The data are expressed as 

mean ± standard deviation obtained from n = 9 (from three independent experiments). 

 

3. Results and Discussion 

The partial replacement of fossil-based DEHT plasticizer in PVC formulations was 

accomplished by preparing several mixtures incorporating increasing amounts of renewable-

based DEHF (Table 6.1). In the first step, DEHF was synthesized by a Fisher esterification 

of FDCA and 2-ethyl-1-hexanol, under acidic conditions (Scheme 1), and its structure 

probed by FTIR, NMR and MS spectroscopies (Figures S1-S4) with a molecular weight 

equal to 380.30 (Table S1); followed, in the second step, by DEHF mixture with DEHT; and 
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then, finally, compounding the plasticizers mixture with PVC resin, and also with stearic 

acid and zinc stearate, selected as lubricant and heat stabilizer, respectively.26,27 

 

 

Scheme 1. Synthesis of DEHF. 

 

Interestingly, it was noted that DEHF has the same density (0.98) but slightly lower 

viscosity (55 cP) than DEHT (63 cP) (Table S1), which could facilitate its dispersion within 

the PVC matrix, and in this way also facilitate dispersion in the case of the DEHF/DEHT 

mixtures. 

 

3.1. Structural characterization of PVC-DEHF/DEHP films 

The PVC-DEHF/DEHT films and their main components, i.e., DEHF and DEHT 

plasticizers, as well as the pure PVC were studied by ATR FTIR spectroscopy (Figure 6.1). 

The spectrum of DEHF is in accordance with its expected structure, and with a previous 

report,18 displaying:  symmetrical and asymmetrical C–H stretching vibrations of the furanic 

ring (νsym =C–Hring and νasym =C–Hring) near 3141 and 3162 cm-1 (Figure S1); asymmetrical 

and symmetrical C-H stretching of the methyl and methylene groups of the EH moieties 

(νasym –C-H and νsym –C-H) at 2958, 2928, 2873 and 2860 cm-1, respectively;18,28,29 one 

intense band at 1719 with a shoulder at around 1740 cm-1 arising from the carbonyl stretching 

vibration, typical of ester groups (ν C=O). The presence of the higher wavenumber band at 

1740 cm-1 is most likely associated with plasticizer-plasticizer associations involving the 

carbonyl groups.30 Also detected were CH3 in plane deformation (δ CH3) at 1380 cm-1; 

aromatic C-H in plane angular deformation vibration at 1270 cm-1; near 941 cm-1 the out of 

plane trans deformation vibration (ω C-H);18 and the typical vibrational modes of 2,5-

disubstituted furanic ring near 980, 823, and 764 cm-1. 



 

Chapter VI – Replacing fossil-based di(2-ethylhexyl) terephthalate by sugar-based di(2-ethylhexyl) 2,5-

furandicarboxylate for benign PVC plasticization: synthesis, materials preparation and 

characterization 

179 

 

 

Figure 6.1. Normalized ATR FTIR spectrum of all PVC films, and DEHF and DEHT 

plasticizers. 

 

The spectrum of the fossil-based DEHT is quite similar to that of DEHF counterpart, 

except for the bands at 3100 cm-1, arising from the C-H stretching mode of the benzenic ring 

and those of 1,4-disubstituted benzenic ring at 728 cm-1. The spectrum of the pure PVC 

showed the main characteristic vibrational bands of this polymer (Figure 6.1), viz.: C-H 

stretching on neighboring C-Cl group at 2966 cm-1; asymmetrical and symmetrical C-H 

stretching (νasym,sym –C-H) at 2908 cm-1; CH2 deformation at 1425 cm-1; CH2 deformation at 

1328 cm-1, Cl-CH out of plane angular deformation at 1252 cm-1; out of plane trans 

deformation at 958 cm-1 and the C-Cl bond stretching vibrations in the region between 660-

580 cm-1.31–33 

As expected, the ATR FTIR spectra of the PVC-DEHF/DEHT blends (Figure 6.1) 

displayed the characteristic bands of the two main components, i.e., the plasticizers and the 

pure PVC. The characteristic vibrational peaks of the other additives were not 

distinguishable in the spectra of the films. 
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Probing PVC-plasticizer compatibility. It is well known that an enhanced 

compatibility/miscibility of a polymer-plasticizer blend is essentially the result of physical 

interactions between the components of the mixture which could be followed by infrared 

spectroscopy.2,3 As previously suggested, in the particular case of PVC-aromatic ester 

plasticized blends, for example, PVC-DEHT or PVC-DEHP, the main interactions are 

essentially of dipole-dipole nature involving the polarized carbon−chlorine (C−Cl) and the 

carbonyl (C=O) groups of PVC and plasticizer, respectively.28,30,33 The vibrational modes 

stemming from these groups denounced the blends compatibility and will be studied in more 

detail. 

From the neat plasticizers to the ensuing blends, a red-shift of the C=O stretching band 

from 1718 cm-1 to lower wavenumbers, e.g. to 1715 cm-1 for PVC1, and to near 1700 cm-1 

for all the other blends was observed (Figure 6.1), in accordance with Tabb et al. findings.33 

This result is indicative of interactions between the plasticizers and the PVC polymer chains 

and in accordance with an effective plasticization process.28,29,34 However, in a previous 

study by Yu et al.18 about PVC-DEHF films, no shift of this band was observed, which was 

attributed to probable weak interaction between the plasticizer and the PVC matrix. 

Oppositely, the herein presented results support the enhanced compatibility of the present 

PVC plasticization system involving both DEHF and DEHT. Both the nature of plasticizers 

mixture and the methodology used to prepare the PVC formulations, by a pre-mixture 

procedure between all the components for a period of 30 minutes, contribute to the enhanced 

compatibility. 

Other important spectral changes, in the region between 660-580 cm-1 (Figure 6.2), 

attributed to the C–Cl stretching vibration modes (ν C-Cl) were clearly observed. There was 

both a broadening and splitting of the band associated with the atactic PVC fraction 

(amorphous domains), centered at 608 cm-1, especially in the case of the blends prepared 

with higher amounts of DEHF compared with neat PVC. Furthermore, the band at 638 cm-1 

related to crystalline domains of PVC remained essentially unchanged, except for DEHF 

amounts higher than 27% (PVC4). Similar observations were denoted in several other 

previous studies, and were pointed out as evidence of a strong interaction between PVC and 

the plasticizer.13,35 Moreover, this is consistent with the classical plasticization process 

essentially affecting the amorphous domains of PVC, through a solvation process.33 Hence, 

for the present PVC-DEHF/DEHT system similar conclusions can be inferred. In particular, 
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revealing that DEHF/DEHT mixture of plasticizers could improve the plasticization process, 

increasing the compatibility between the different compounds in the PVC formulations.  

 

 

Figure 6.2. ATR FTIR spectra of all PVC-DEHF/DEHT blends in the C=O and C-Cl 

stretching regions. 

 

The XRD patterns of all plasticized films (Figure 6.3) evidenced their essentially 

amorphous nature, with nonetheless, some broad crystallinity peaks at 2 16.5, 18.4 and 

24.4 º, in agreement with literature and ATR FTIR results.36,37 The pure PVC pattern, was 

consistent with the PVC-DEHF/DEHT patterns, although evidencing higher degree of 

crystallinity. 
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Figure 6.3. X-Ray diffractograms of all DEHF/DEHT-based PVC films and pure PVC. 

 

3.2. Mechanical behaviour 

3.2.1. Dynamic mechanic thermal analyses 

All blends were analyzed by DMTA to evaluate the influence of using DEHF/DEHT 

plasticizers on their dynamical-mechanical properties. Figure 6.4 shows the tan δ and 

storage modulus (E') traces of DEHF/DEHT-based PVC films, recorded in tension mode, 

at constant frequency (1 Hz). Figure S5 displays the loss modulus (E’’) traces. The main 

results are summarized in Table S2. 

The tan δ curves (Figure 6.4(a)) of all plasticized PVC films displayed a single maximum 

corresponding to a  transition, ascribed to the glass transition (Tg), with values ranging from 

19.2 to 23.8 ºC, typically decreasing with the increasing content of DEHF in the blend 

(PVC1-3). However, going into further detail, a small shift to higher Tg values occurred in 

the case of those blends incorporating the highest relative amounts of DEHF (PVC4 and 5). 

This could be related to the existence of more rigid DEHF molecules in the blends, leading 

to a slightly increase on Tg values, in similarity to FDCA-based polyesters.38,39  
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Figure 6.4. Main results of DMTA analyses a) tan δ and b) E' traces of all plasticized PVC 

films. 

 

In comparison with the tan δ curve of pure PVC, the maximum was at much higher 

temperatures than in the case of the blends, approximately 97.4 °C. These results are in 

accordance with literature results on pure PVC and on other plasticized systems 

incorporating DEHF or other 2,5-FDCA-based esters,17,18 DEHT,12,40 and binary mixtures 

of DEHT with other plasticizers.29,41,42 Importantly, the appearance of a single Tg on the tan 

δ traces of plasticized PVC films, and shifted to lower values, reaching a difference of e.g. 
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77 ºC relatively to PVC3 formulation, suggested the compatibility between the plasticizers 

and PVC as already ATR FTIR results suggested.42,43 

The blends’ storage modulus traces (Figure 6.4 (b)) clearly show three main regions, viz.: 

one region below the glass transition corresponding to an almost constant high modulus, 

ranging from 551-695 MPa at -10 ºC; followed by an abrupt decrease of the modulus due to 

Tg transition; finally, at higher temperatures, the modulus reached its minimum and 

maintained roughly constant between 38 to 43 MPa at 25 ºC. In general, the storage modulus 

of the blends were far below from that of pure PVC (e.g. 12-13 MPa at 40 ºC vs. 377 MPa 

at 40 ºC, respectively),44 indicating an improvement of the flexibility of the PVC-

DEHF/DEHT films. In addition, comparing the use DEHF/DEHT mixtures of plasticizers 

(PVC2-5) with the single use of DEHT (PVC1), E´ and E´´ were higher in the former case, 

most probably due to the incorporation of stiff furan plasticizer (Table S2 and Figure S5). 

Nevertheless, incorporating relatively higher amounts of DEHF the modulus tend to 

decrease. 

Furthermore, comparing PVC-DEHF/DEHT blends with those previously reported based 

only on the single use of renewable DEHF as plasticizer, this study clearly highlighted the 

enhanced flexibility of the former, since they had lower E'.18 For example, PVC-DEHF (50 

phr) presented an E´ equal to 91 MPa at 23 ºC.18 In this respect, the DEHF/DEHT binary 

system seems to be not only a valuable approach in view of progressively replacing fossil-

based plasticizers, but also due to their compatible properties. 

 

3.2.2. Tensile tests 

Table 6.2 summarizes the Young’s modulus, tensile strength and elongation at break of 

all plasticized PVC blends. The most interesting result observed was the fact that the 

elongation at break of DEHF/DEHT based formulations increased from 247 % in PVC-

DEHT (PVC1) to 330% in PVC-DEHF/DEHT (PVC3), and tensile strength increased from 

13.19 MPa (PVC1) to 17.46 MPa (PVC3), respectively, indicating an enhancement on the 

flexibility of PVC blends. However, such trend was not detected in the case of the highest 

amounts of DEHF used, i.e., in the case of PVC4 and PVC5. This latter evidence was 

perfectly aligned with the DMTA results, showing that DEHF content higher than 10 phr 

can change the final mechanical properties. 
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Table 6.2. Main results of Young’s modulus, elongation at breakage and tensile strength 

determined at 25 ºC. 

Formulations 
Young's modulus 

(MPa) 

Elongation at break 

(%) 

Tensile strength 

(MPa) 

Pure PVC 153.87 ± 6.3a 180.37 ± 5.16a 30.33 ± 0.28a 

PVC1 8.96 ± 0.26 246.64 ± 9.38 13.19 ± 0.55 

PVC2 8.20 ± 0.14 316.26 ± 9.65 16.37 ± 0.51 

PVC3 7.58 ± 0.29 330.34 ± 11.66 17.46 ± 0.54 

PVC4 7.72 ± 0.45 238.63  ± 4.26 13.35 ± 0.24 

PVC5 8.69 ± 0.31 225.76 ± 7.49 14.57 ± 0.37 

a Determined by Jia et al.45. 

 

As expected, comparing DEHF/DEHT plasticized PVC (PVC2-5) with the non-

plasticized one,14 as well as, with DEHT-based PVC film (PVC1 formulation), an 

improvement on the flexibility was achieved, but at the expense of the Young’s modulus 

decrease (see Figure S6). In addition, enhanced flexibility was also achieved for all range of 

DEHF/DEHT ratios compared with PVC-DEHF, displaying a maximum increase on the 

elongation at break of around 82 %.18 

 

3.3. Thermogravimetric analysis 

DEHF and DEHT plasticizers, as well as, all the related PVC formulations were 

characterized in terms of their thermogravimetric behavior through TGA analysis, and the 

main results are summarized in Table 6.3 and Figure S7. 

TGA thermograms of DEHF/DEHT-based PVC films (PVC1 to PVC5) exhibited two 

major decomposition steps, (Figure S7), in agreement with other plasticized PVC 

systems.11,45,46 The first step was comprehended between 200-380 °C, showing the higher 

weight loss of the PVC films (around 72 %), and was related to dechlorination of PVC and 

formation of polyenes, as well as to the thermal decomposition of the plasticizers. The 

second degradation step was found between 420 and 530 ºC, with an observed lower weight 

loss (around 13 %), and it occurred mainly due to the evolution of toluene and methylated 

aromatics coming from the decomposition of the polyenes.47 
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Table 6.3. Decomposition at 5, 10 and 50% weight loss (Td,5%, Td,10% and Td,50%) and 

maximum decomposition (Td,max) temperatures of plasticized PVC films, and their pure 

components counterparts. 

Formulations 
Td, 5% 

(ºC) 

Td, 10% 

(ºC) 

Td, 50% 

(ºC) 

Td, max1 

(ºC) 

Td, max2 

(ºC) 

Weight loss (%) 

Residue 

(%) 
1st step 2nd step 

200 - 380 ºC 420 - 530 ºC 

DEHF 175.9 237.8 318.8 349.8 - - - 0.01 

DEHT 279.0 297.3 343.1 360.5 - - - 0.07 

Pure PVC 268.7 274.6 303.2 286.4 461.7 58.2 23.7 3.46 

PVC1 241.9 262.0 308.2 305.0 455.7 71.8 13.5 8.85 

PVC2 243.0 263.3 308.5 298.7 460.3 72.1 12.8 9.93 

PVC3 250.0 262.7 306.1 297.5 459.4 71.7 12.6 13.22 

PVC4 245.1 264.0 308.0 295.1 459.2 72.6 12.6 10.44 

PVC5 247.3 263.2 304.6 292.3 458.3 72.2 12.1 12.75 

 

For all range of DEHF/DEHT ratios used in the blends an expected increase of the Td,max1 

compared with pure PVC (286 ºC) was observed.45,47 This was directly related to the 

incorporation of high-thermal behavior plasticizers in the blends. Indeed, the maximum 

degradation temperatures of DEHF and DEHT plasticizers were ca. 349 and 361 ºC, 

respectively. In terms of Td,max2, no relevant variation was observed, except for a general 

decrease of this parameter in the case of the blends compared with the pure PVC counterpart. 

Moreover, a decrease on both Td,5% and Td,10% of the plasticized PVC films compared with 

the non-plasticized PVC was noted, mostly due to the lower evaporation/degradation 

temperature of the DEHF plasticizer. Despite these results, the ensuing DEHF/DEHT-based 

PVC films presented a higher thermal stability than those prepared from a single plasticizer, 

either DEHF18 or DEHT (PVC1), in agreement with the occurrence of strong interactions 

between the mixture of plasticizers and PVC matrix, favoring the blend stability. 

 

3.4. Chemical and volatile resistance tests 

The new PVC blends of binary mixtures of DEHF/DEHT were evaluated in terms of 

plasticizers migration stability, simulating potential DEHF/DEHT migration under daily 

situations, such as for example exudation from food/beverages packages and medical blood 

bags. In practice, the weight loss percentages by leaching of plasticizers from PVC 

specimens to distilled water, sodium phosphate buffer (pH~ 7) and to cyclohexane were 
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determined (chemical resistance).48 Additionally, the PVC blends were buried in active 

carbon and the PVC weight loss assessed (volatile resistance), simulating for example the 

case of plasticizers migration from baby nipples to solid medium. The main results of weight 

loss are summarized in Figure 6.5 and Table S3. 

 

 

Figure 6.5. PVC blends weight loss percentage results determined from the chemical and 

volatile resistance tests. 

 

The weight loss percentages of all DEHF/DEHT plasticized PVC blends in both distilled 

water and PBS solution, were very low, not exceeding ca. 0.3% and 0.2%, respectively, due 

to the hydrophobic nature of the plasticizers. These findings indicated that the DEHF/DEHT 

mixture of plasticizers were quite compatible with the PVC matrix, in accordance with the 

FTIR results. Importantly, these low leaching values clearly showed that they were not 

easily extracted.  

PVC-DEHT film (PVC1) had the lowest weight loss values in distilled water, followed 

very closely by all the other plasticized systems studied: PVC2<PVC5<PVC3<PVC4. In 

general, all weight losses observed for PVC-DEHF/DEHT and PCV-DEHT samples were 

of the same magnitude as to previously published results, or even lower.10–12,40,41 For 

example, migration tests in distilled water conducted in the same conditions as those carried 
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out in the present study reported a weight loss of around 0.22% to PVC/DEHP, and of ca. 

0.20% to a PVC/cardanol-based plasticizer blend.40 

An overall trend of the cyclohexane migration tests was that the weight loss results were 

much higher than those obtained in aqueous media (water or PBS), which is easily 

understood considering the essentially hydrophobic nature of both plasticizers and 

cyclohexane. The PVC-DEHT (PVC1) weight loss was higher than those obtained for the 

DEHF/DEHT-based films (PVC2-5), most probably to a higher solubility of DEHT in 

cyclohexane. This is a very interesting fact enabling the consideration of a new wide range 

of applications, especially for materials to be used in contact with foods with high fat 

content, such as, blood, foods, among others. 

Volatile resistance results (Figure 6.5 and Table S3) were quite similar to chemical 

resistance ones, displaying a maximum weight loss percentage of ca. 0.3% for PVC3. A 

general trend of both chemical and volatile tests was that up to a DEHF/DEHT ratio equal 

to 10/45 phr/phr (PVC3) the weight loss percentages increased but decreased thereafter for 

higher values of DEHF/DEHT ratios. This behavior was also in agreement with the thermal 

and mechanical results reported before. Moreover, in the case of DEHF-based PVC films,18 

similar results were obtained for formulations incorporating a DEHF content higher than 30 

phr. This trend could indicate, on the one hand, that for DEHF/DEHT ratios lower than 

10/45 (PVC2 and 3), DEHT plasticizer dominated the interactions with the PVC matrix, 

whereas DEHF molecules acted as a secondary plasticizer. On the other hand, for the higher 

DEHF/DEHT ratios (higher than 10/45), DEHF plasticizer played a major role instead, and 

one could conjecture that it was also involved in relevant PVC-plasticizer interactions, 

hindering the migration process. 

Importantly, chemical resistance and volatile resistance tests of the new DEHF/DEHT 

binary mixtures showed weight loss percentage values far below the specified limits for 

food and medical applications (weight loss < 50 % of the plasticizer content, according the 

Standard test D 1239-98).23 Another important result that is worth to highlight here is that 

the very small migration of the plasticizers observed from the PVC blend will not be enough 

to negatively influence stiffness/flexibility of the PVC materials along their life-cycle. 
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3.5. Citotoxicity assays 

Toxicity is one of the majors health concerns associated to plasticizers routinely used in 

common ‘plastics’.49 Actually, in this context legislators have banned DEHP from some EU 

countries. The present study did not neglect this important issue and despite all the other 

evidenced adequate plasticizing properties (both in terms of thermal and mechanical 

behaviour together with low migration profile) also the cytotoxicity profile of DEHF, using 

the Alamar blue assay in 3T3-L1 cell line, was evaluated for the first time. For comparison 

reasons, cell viability in the presence of commercially used DEHT was also evaluated under 

the same conditions. The main results are displayed in Figure 6.6. 

 

 

Figure 6.6. Cell viability in 3T3-L1 cell line after (a) 48 hours and (b) 72 hours of incubation 

in the presence of DEHF or DEHT plasticizers. Values represent the mean ± standard 

deviation (n = 9). 

 

3T3-L1 mouse cells were incubated for 48 and 72 h in the presence of different amounts 

of DEHF and DEHT (ranging from 1 to 500 μM). According to the Alamar blue assay 

results, plasticizers didn’t exhibit significant toxicity in 3T3-L1 cells, up to a concentration 

of 500 μM and for a period of 48 and 72 h. Approximately 100% cell viability was obtained 

with both DEHF and, as expected, also with DEHT, after 72 h of incubation (Figure 6.6). 

Generally, materials that promote a cell viability higher than 80% are considered as 

biocompatible.25 
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4. Conclusions 

In summary an effective strategy to prepare plasticized PVC blends with higher ‘green 

content’ based on the combination of the renewable-based DEHF and the fossil based DEHT 

compounds is reported. The ensuing PVC/DEHF-DEHT materials showed to have enhanced 

compatibility between PVC matrix - mixture of plasticizers, compared to single use of 

DEHF,18 confirmed by FTIR spectroscopy. In this regard, all PVC blends spectra display a 

red-shift of the C=O stretching band from 1718 cm-1 to lower wavenumbers, in accordance 

with the occurrence of dipole-dipole interactions,33 and an effective plasticization process. 

Accordingly, these new PVC blends showed to have a reduced Tg, from around 97 to 20 °C, 

together with an enhanced elongation at break (up to 330 %) but at the expense of some 

reduction of its stiffness with Young’s modulus of approximately 8 MPa. Importantly, both 

migration tests and cell viability assays using 3T3-L1 cell line showed promising results in 

terms of applications prospects. For example, migration tests of PVC/DEHF-DEHT blends 

in water showed that the weight loss will at the most be equal to 0.3%, despite some increase 

compared to PVC/DEHT ( 0.1%), but still quite low values were obtained. In terms of 

cytotoxicity of DEHF samples up to 500 μM, for a maximum period of 72 h, an almost 100% 

cell viability was observed. 
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Figure S1. ATR FTIR spectrum of DEHF plasticizer. 
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Figure S2. 1H NMR spectrum of DEHF (CDCl3). 

 

 
Figure S3. 13C NMR spectrum of DEHF (CDCl3). 
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Figure S4. Main results from GC-MS analysis a) GC chromatogram and b) MS spectra of 

DEHF. 
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Figure S5. E´´ traces of all PVC films. 
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Figure S6. Mechanical properties of all PVC-DEHF/DEHT blends: a) Young’s modulus, b) 

elongation at break and c) tensile strength. 
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Figure S7. TGA (a) and DTG (b) thermograms of all PVC-DEHF/DEHT blends, related 

DEHF and DEHT plasticizers and pure PVC. 
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Tables: 

 

Table S1. Chemical characteristics of the different plasticizers. 

Plasticizers Molecular formula Molecular weight 
Viscosity 

(cP at 25 ºC) 

Density 

(g/cm3) 

DEHF C22H36O5 380.53 55 0.98 

DEHT C24H38O4 390.56 63 0.98 

The relative uncertainty of the dynamic viscosity is ±0.35%. 

 

 

Table S2. Glass transition (Tg) and storage modulus (E') at -10 ºC and 25 ºC of all PVC-

DEHF/DEHT blends. 

Formulations Tg (ºC) 
E' (MPa) 

at T-10ºC  at Tg  at T25ºC 

Pure PVC 97.4a -  -  - 

PVC 1 23.5 551.8  50.6  42.9 

PVC 2 22.1 658.2  56.9  42.2 

PVC 3 20.4 694.7  58.5  38.2 

PVC 4 21.1 617.3  55.2  39.4 

PVC 5 21.5 649.7  56.1  40.2 
a Determined by DMTA using material pocket technology. 

 

 

Table S3. PVC blends weight loss percentage results determined from the chemical and 

volatile resistance tests. 

chemicals 

Formulations 

PVC1 PVC2 PVC3 PVC4 PVC5 

Weight loss (%)a 

water 0.04 0.08 0.26 0.27 0.09 

PBS 0.04 0.07 0.17 0.13 0.13 

cyclohexane 21.40 16.93 19.86 15.19 12.20 

activated carbon 0.04 0.21 0.26 0.14 0.21 

aError deviations were less than or equal to 0.01%. 
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1. Concluding Remarks 

The demand for new renewable-based polymers and materials has increased in the last 

decades, mostly due to environmental concerns. In this context, it has been demonstrated 

that FDCA-based materials prepared in this thesis could be promising renewable alternatives 

to fossil-based counterparts. In fact, in general terms, all prepared materials, besides being 

prepared from renewable resources (at least partially) have shown attractive thermal and/or 

mechanical properties, very similar to those based on non-renewable counterparts, namely 

from TPA. 

This work was essentially focused on the synthesis of FDCA-based polyesters and 

nanocomposites thereof. This study also explored the FDCA-based ester as a plasticiser for 

PVC (PART B and C, respectively). 

The first study was related to the synthesis of a new furanic-cycloaliphatic homopolyester 

with enhanced thermal features, namely PCdF. Moreover, a comparative study between 

PCdF and PCF, since they are structurally related, and also a comparison with their non-

renewable counterpart was done. Their synthesis through two-step bulk 

polytransesterification reaction using titanium (IV) butoxide as catalyst lead to 

homopolyesters with the highest molecular weights PCdF and PCF were characterised in 

detail by several techniques, showing to be semi-crystalline materials with high glass 

transition temperatures (Tg values of 175 e 105 ºC for PCdF and PCF, respectively), and 

thermally stable up to 377 ºC. These results are in agreement with the literature, showing 

that incorporation of the more rigid structure cyclohexanediol into the polymeric chain 

backbone lead to an increase on the thermal properties. Moreover, it was found that, the 

absence of the CH2 group on PCdF homopolyester, also lead to higher Tg than PCF, as well 

as higher thermal stability when compared with their related petroleum-based counterpart. 

These homopolyesters could find several interesting industrial applications, worth exploring 

in the future, namely in optical films or in injection moulding materials, in similarity to PCT. 

The second study was devoted to the synthesis of poly(ester-ether)s (PEEs) copolymers. 

These materials are known to incorporate both stiff and soft units in their polymer chain, 

displaying good thermal stability and also a large working temperature interval between their 

Tg and Tm values, turning possible their processability at lower temperatures than for example 

PBF. A series of poly(ester-ether)s (PEEs) copolymers were prepared using different 
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PBF/PPO ratios to tune the final thermal properties of these materials. In fact, when small 

amounts of PPO were incorporated into polymer chain, the ensuing copolyesters presented 

a semi-crystalline character similar to that of PBF, however when similar amounts of PBF 

and PPO were used the resulting material was unable to crystallise. Despite some decrease 

of their thermal properties when compared with the PBF homopolyester, their maximum 

degradation temperatures were still reasonable (Td between 340-365 ºC). Moreover, a sharp 

decreased on their Tg was noted, specially when compared with PBF (values ranging from -

42.3 to -32.6 ºC and 75.6 ºC for PEEs and PBF, respectively). Due to their tuneable thermal 

properties, they can be easily processed as thermoplastic materials. 

In the third study nanocomposite films were prepared by solvent-casting based on 

poly(butylene 2,5-furandicarboxylate)-co-(butylene diglycolate) (PBF-co-PBDG) 

copolyesters and acetylated bacterial cellulose (Ac-BC). A balance between flexibility, 

prompted by the PBF-co-PBDG polymeric matrix; and the high strength prompted by the 

bacterial cellulose fibres, enabled the preparation of a wide range of new nanocomposite 

materials. In fact, by incorporating 30 weight % of Ac-BC and higher amounts of PBDG, 

these reinforced materials showed an increased stiffness (Young’s modulus up to 1239 MPa) 

and enhanced elasticity (elongation at break values up to 25.0 %) compared to their neat 

(co)polyester counterparts. In terms of oxygen gas barrier properties, similar results were 

obtained for nanocomposites and their related (co)polyesters, expanding the exploitation of 

these materials for packaging applications. 

Besides the need to find new renewable-based polymers, it is also important to try to 

replace also other petroleum-based products used in the most variate number of industrial 

applications. In this vein, this study also explored the partial replacement of DEHT by a 

FDCA-based monomer, namely the di(2-ethylhexyl) 2,5-furandicarboxylate (DEHF) for 

PVC formulations. DEHF was mixed with DEHT until 20 per hundred resin (phr) (55 phr 

on total PVC formulation), and the resulting PVC blends have shown similar glass 

transitions temperatures (19.2 to 23.8 ºC) to those obtained with commercial DEHT, 

enhanced flexibility (elongation at break up to 330%) and even higher compatibility with 

PVC matrix. Furthermore, very low weight loss percentages were observed through 

migration tests, increasing their potential for applications in food/beverages packages and 

medical blood bags. For example, in cyclohexane, weight loss was higher in the case of PVC 

blends prepared with DEHT as single plasticizer, when compared with PVC-DEHF/DEHT 
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blends. Interestingly, viability tests showed, that up to 500 μM, both plasticizers displayed a 

non-toxic profile, showing that the combination of DEHF and DEHT plasticizers into PVC 

formulations increased not just the green content, but also the wide range of applications. 

In conclusion, this thesis dealt with the synthesis of several FDCA-based materials with 

quite interesting properties, which pump up a panoply of renewable possible substitutes to 

those prepared from petroleum resources mainly based on fossil based TPA. Moreover, the 

materials prepared in this study revealed to be an important contribution for a more 

sustainable society. 

 

2. Perspectives 

As refereed above the main goal of this thesis was the development of new FDCA-based 

polymers and nanocomposites, opening new perspectives for new work to be explored. In 

fact, in the future, further work could be performed in order to complement these materials 

characterisations. It will be very interesting to obtain some answers to the following topics: 

1. characterisation of the mechanical properties of some materials, namely PCdF 

homopolyesters and PBF-co-PPOF copolyesters; 

2. study of the biodegradability (under compostable conditions) of all copolyesters and 

nanocomposites prepared in this study; 

3. deep evaluation of plasticisers citotoxicity, i.e., the use of human line cells in in vitro 

tests, and forward also, in in vivo tests; 

4.  synthesis and characterisation of new chemicals and materials based on FDCA; 

5. the synthesis of new nanomaterials. 
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