In search of something special?

Ionic Liquids for Fine Chemicals & Catalysis
Catalyze your chemical syntheses and make your processes “greener” ...

Ionic Liquids, innovative salts with melting points below 100 °C, offer the option of tunable properties generating the potential to get improved solvent systems for chemical reactions. These materials consist entirely of ions often being liquid at room temperatures.

Advanced properties beneficial for fine chemistry, like comparably high polarities and negligible vapor pressure, make Ionic Liquids the perfect materials for these processes. Your benefits resulting from these unique properties can be achieved by using Ionic Liquids as an immobilizer of a transition metal catalyst, as solvent or co-solvent or even as a catalyst itself.

Merck Ionic Liquids: The right choice for you.

• Together with us you are well positioned to deal with the challenges of creating the basis today for your success tomorrow.

• By reliably supplying you with materials on a continuous high quality level according to specification.

• From the initial idea to a multi ton production scale, all from one hand giving you the opportunity to support you in all regulatory affairs like GHS and REACH.

www.merck-chemicals.com/reach
Brønsted acid catalysis

Brønsted acidic Ionic Liquids as catalytic system

Dehydration of alcohols in Ionic Liquids

Synthesis of 1-Phenylcyclohex-1-en

\[
\text{Ph-OH} \quad \xrightarrow{[\text{EMIM}][\text{HSO}_4]} \quad \text{Ph-C} \quad \Delta \text{H}_2\text{O}
\]

Advantages:
- Product can be easily separated by decantation or distillation
- Ionic Liquid can be reused several times (up to 10 times)
- High overall yield (> 90 %) in a short reaction time
- Effective without additional Brønsted acid

Conversion of mono/di/polysaccharides into furan compounds

Synthesis of HMF from Inulin

\[
\text{Polysaccharide} \quad \xrightarrow{\text{iso-Butyl-methylketone + [EMIM][HSO}_4]} \quad \text{HO} \quad \text{O}
\]

\[\Delta \]

S-(Hydroxymethyl)-2-furaldehyde, yield 73 %

Using Brønsted acidic Ionic Liquids prevents the use of environmentally questionable chromium salts thereby achieving high yields compared to conventional HMF synthesis routes.
Synthesis of chromane derivatives in Ionic Liquids

Volatile Brønsted acids, dissolved in Ionic Liquids with the same counter anion, stay in the system even at temperatures well above the boiling point of the Brønsted acid.

Synthesis of 6-Bromo-2,2,5,7-tetramethylchromane

![Chemical structure of 6-Bromo-2,2,5,7-tetramethylchromane]

6-Bromo-2,2,5,7-tetramethylchromane, 89 % yield

Synthesis of (Vitamin E) (DL-α-Tocopherol)

![Chemical structure of Vitamin E]

Vitamin E, 92 % yield

Synthesis was optimized by the application of biphasic system: Ionic Liquid/hexane. Ionic Liquid can be re-used several times.

Ketals splitting in Ionic Liquids

Synthesis of Dimethylketone and Cyclohexanone

![Chemical structures of Dimethylketone and Cyclohexanone]

Dimethylketone, 82 % yield

Cyclohexanone, 63 % yield
Lewis acid catalysis

Activation of catalysts by increasing the electrophilicity

Combining certain Ionic Liquids (ILs) with specific catalysts under slightly acidic conditions can initiate the activation of catalysts by increasing the electrophilicity of the catalytic center. Examples of such effects can be found in the following published reaction schemes. The increase of reaction selectivity, a reduction of reaction time or increase in product yield can be analyzed from the cited publications.

Propene dimerization in chloroaluminate IL

\[
\text{CH}_2=\text{CH}_2 \xrightarrow{\text{BMIM} \cdot \text{Cl} / \text{AlCl}_3 / \text{AlCl}_4} \text{CH}_2=\text{CH}-\text{CH}_2 + \text{CH}_2=\text{CH}_2 + \text{CH}_3=\text{CH}-\text{CH}_2
\]

Friedel-Crafts Acylation of benzene with acetylchloride to form acetophenone

\[
\text{C}_6\text{H}_5 + \text{O} = \xrightarrow{\Delta} \text{BMIM}[\text{AlCl}_4] \rightarrow \text{CH}_3\text{C}_6\text{H}_4\text{O}
\]

Ref.: Changzhi Li, Wujun Liu, Zongbao (Kent) Zhao, Catalysis Communications 8 (2007) 1834-1837

Friedel-Crafts Acylation of anthracene with oxalyl chloride to form 1,2-aceanthrylenedione

\[
\text{C}_14\text{H}_{10} \xrightarrow{\Delta} \text{BMIM}[\text{AlCl}_4] \rightarrow \text{C}_14\text{H}_{10} = \text{O}
\]

Ref.: Yuan Xin-huaa, Chen Minb, Cheng Xiao-nonga, Chemical Engineering Journal 146 (2009) 266-269

For further information please contact: Dr. Markus Wagner Phone: +49 (0) 6151 / 72-33761 markus.wagner@merckgroup.com
Further reading/References:

Brønsted acid catalysis

- Ionic liquids and catalysis: recent progress from knowledge to applications
 H. Olivier-Bourbigou, L. Magna, D. Morvan,
 Applied Catalysis A: General 373 (2010) 1-56

- Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids.

- Solvent-free synthesis of benzoic esters and benzyl esters in novel Brønsted acidic ionic liquids under microwave irradiation.
 X Li, e.a., Catalysis Communications 9 (2008) 2264-2268

- Acidic ionic liquid [BMIM][HSO4]: An efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection.
 N. Gupta e.a., Catalysis Communications 8 (2007) 1323-1328

- Brønsted acidic ionic liquids: A green, efficient and reusable catalyst system and reaction medium for Fischer esterification.
 T. Joseph e.a., Journal of Molecular Catalysis A: Chemical 234 (2005) 107-110

Lewis acid catalysis

- Nickel-catalyzed dimerisation of propene in chloroaluminate ionic liquids.

- Friedel-Crafts acylation of anthracene with oxalyl chloride catalyzed by ionic liquid of [BMIM][Cl]/[AlCl3].
 Y. Xin-hua e.a., Chemical Engineering Journal 146 (2009) 266-269

- Detailed kinetic study of cumene isopropylation in a liquid-liquid biphasic system using acidic chloroaluminate ionic liquids.
 J. Joni e.a., Journal of Catalysis 258 (2008) 401-409

- Evaluation Lewis acid catalyzed hydroalkylation of alkenes in neat and in ionic liquids.
 H. E. Lannan e.a., Journal of Molecular Catalysis A: Chemical 279 (2008) 218-222

- Isobutane/2-butene alkylation catalyzed by chloroaluminate ionic liquids in the presence of aromatic additives.
 J. Zhang e.a., Journal of Catalysis 249 (2007) 261-268

- Efficient synthesis of benzophenone derivatives in Lewis acid ionic liquids.
 C. Li e.a., Catalysis Communications 8 (2007) 1834-1837

- Coumarin syntheses via Pechmann condensation in Lewis acidic chloroaluminate ionic liquid.
 M. K. Potdar e.a., Tetrahedron Letters 42 (2001) 9285-9287

- Catalyzing Henry reaction in chloroaluminate ionic liquids.
 A. Kumar e.a., Journal of Molecular Catalysis A: Chemical 235 (2005) 244-248

- Arene carboxylation in acidic, chloroaluminate ionic liquids.
 E. J. Angueira e.a., Journal of Molecular Catalysis A: Chemical 227 (2005) 51-58

- Friedel-Crafts acylation of aromatics catalysed by supported ionic liquids.
 M. H. Valkenberg e.a., Applied Catalysis A: General 215 (2001) 185-190

Ordering information

<table>
<thead>
<tr>
<th>Productname</th>
<th>Short name</th>
<th>Cat. No.</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Ethyl-3-methylimidazolium hydrogensulfate</td>
<td>[EMIM][HSO₄]</td>
<td>490223</td>
<td>S</td>
</tr>
<tr>
<td>1-Butyl-3-methylimidazolium heptachloroaluminate</td>
<td>[BMIM][Al₂Cl₇]</td>
<td>490326</td>
<td>S</td>
</tr>
</tbody>
</table>
Example fields of application

Bronsted acid catalysis
- Dehydration of alcohols
- Synthesis of Vitamin E
- Ketal splitting
- Synthesis of HMF from polysaccharides

Lewis acid catalysis
- Olefin Dimerization
- Friedel-Crafts Acylation
- Synthesis of acetophenon from benzene
- Synthesis of 1,2-aceanthrylenedione from anthracene

Ionic Liquids in acid catalysis
The following examples should be read as information to the broad utility of ILs for acid catalysis or in combination with catalysts (composite ionic liquids). Possible rights of third parties related to such examples may exist.

For further information please contact: Dr. Markus Wagner
Phone: +49 (0) 6151/72-33761
markus.wagner@merckgroup.com
For further information on Merck and our products please contact

Merck KGaA
64271 Darmstadt, Germany
E-mail: ionicliquids@merckgroup.com
www.ionic-liquids.com
www.merck-chemicals.com

Merck provides information on application technologies and relevant regulations based upon our current knowledge and opinion at the time of printing. Merck makes no representation or warranty of any kind, express or implied, including merchantability or fitness for a particular use, with respect to such information or its application. Purchasers must independently determine the suitability of our ingredients for the purchaser’s intended product, use or process. Purchaser is responsible for observing all laws and regulations relevant to such products, uses or processes. The foregoing information and suggestions are also provided without warranty of non-infringement as to the intellectual property rights of third parties, and shall not be construed as any inducement to infringe the rights of third parties.