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Graphene electronic fibres with touch-sensing and light-
emitting functionalities for smart textiles

Elias Torres Alonso’, Daniela P. Rodrigues?, Mukond Khetani', Dong-Wook Shin', Adolfo De Sanctis®', Hugo Joulie',
Isabel de Schrijver’, Anna Baldycheva', Helena Alves**, Ana 1. S. Neves(®', Saverio Russo' and Monica F. Craciun'

The true integration of electronics into textiles requires the fabrication of devices directly on the fibre itself using high-performance
materials that allow seamless incorporation into fabrics. Woven electronics and opto-electronics, attained by intertwined fibres with
complementary functions are the emerging and most ambitious technological and scientific frontier. Here we demonstrate
graphene-enabled functional devices directly fabricated on textile fibres and attained by weaving graphene electronic fibres in a
fabric. Capacitive touch-sensors and light-emitting devices were produced using a roll-to-roll-compatible patterning technique,
opening new avenues for woven textile electronics. Finally, the demonstration of fabric-enabled pixels for displays and position
sensitive functions is a gateway for novel electronic skin, wearable electronic and smart textile applications.
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INTRODUCTION

Smart textiles are an emerging research field with applications in
medical diagnostics, health monitoring, clothing, home fabrics,
automotive textiles, tracking and packaging.'~ Devices seamlessly
integrated into fabrics represent the ultimate form of smart
textiles*> and require the development of fibres endowed with
electronic functions. Woven smart textiles attained by intertwined
fibres with complementary functions are one of the most
ambitious technological and scientific frontiers, which can truly
deliver the seamless incorporation of devices into fabrics, with a
potential transformative development in intelligent clothing. Such
advancements can project wearable electronics to new frontiers
whereby the current rigid® or semi-flexible’™'® devices glued onto
fabric (e.g. by planarisation layers) will be replaced by electronic
fibres coated with imperceptible and low-weight functional
components needed to preserve the softness of nowadays
clothing. These ambitious aims impose stringent requirements
on a vast range of physical properties of the constituent materials,
seldom met by most systems typically displaying modest electrical
and thermal properties and low chemical stability, leading to poor
device performance on fibres.”® The recently discovered atom-
ically thin materials hold the gamut of required properties to
develop conceptually novel smart textiles, to include high
electrical conductivity,'*'® optical transparency,'”'® mechanical
strength (with Young’s modulus of 2 TPa'? and fracture strength
of 130 GPa??), thermal stability?', as well as ease of processing into
different structures, such as atomically thin-films, paper-like
membranes, and printed films. To date, several strategies to
integrate graphene materials with textiles have been explored,’
132223 Jaading to the development of transistors,'? supercapaci-
tors'®> and conductive graphene fibres.?*?* Crucially, woven
graphene-enabled textile electronics as well as a pivotal range
of opto-electronic technologies such as light-emitting devices and

sensors, essential to enable a ground-breaking development in
smart textiles, are still a futuristic theoretical concept.

PP fibres are ubiquitous in textile for numerous applications
from healthcare, security and defence to daily life clothing and
fabrics. This is due to their wide range of exceptional properties,
including the lightest, the lowest thermal conductivity and highest
stain resistance than any other fibre. Furthermore, PP fibres also
have extreme mechanical flexibility at low temperature and
resistance to bacteria, while being recyclable and ecologically
friendly. A significant step forward in smart textile would rely on
the ability to widen the scope of the PP fibre properties without
hampering the features that make this material so special to
mankind. Here we demonstrate electronic fibres with functional
devices based on graphene directly fabricated on polypropylene
(PP) textile fibres typically used in commercial applications. We
report two types of electronic devices for future smart textiles:
capacitive touch-sensors and light-emitting devices.

Either for leisure, advertising or displaying information, light
emitting devices need to be incorporated on textile substrates for
truly wearable displays to be achieved. Several examples of such
devices on textile fibres have been realised with different
electrodes, such as indium tin oxide (ITO), or nanowires (NW),
with limitations in terms of stability and flexibility.*™2¢ Similarly,
several reports of touch-sensors based on different electrodes
including graphene have also been published, but most of them
have rise and fall times in the order of seconds.?’~*°

To address the device fabrication compatibility with scale-up
manufacturing, we developed a roll-to-roll-compatible patterning
technique, enabling the integration of graphene circuits into
fabrics. By creating woven arrays from such fibres, we demon-
strate pixels with different sizes that can be integrated in future
textile displays and devices for position sensitive measurements.
Our results demonstrating the realisation of fabrics from light-
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Graphene-based devices on textile fibres. Photos of the polypropylene textile fibre; schematics of the step-by-step process to produce

touch-sensing devices with a lithography process compatible with roll-to-roll manufacturing a and conventional lithography and etching
process b. SEM pictures of the bent touch sensors are shown in d with the gap between graphene electrodes highlighted in green. Schematic
and of photos of light emitting devices are shown in ¢ and e. Photos of touch sensors are shown in f

emitting and electronically active fibres usher the development of
true smart textiles. To this end, we have developed a non-invasive
manufacturing process for electronic PP fibres compatible with
industrial processes (Fig. 1 and Methods section). PP fibres were
coated with graphene as previously demonstrated.?>* For touch-
sensing applications, interdigitated electrodes were patterned on
the graphene coating using a process compatible with roll-to-roll
(R2R) micro-patterning®' and transfer*? of graphene on flexible
substrates (Fig. 1a), resulting in well-defined patterns down to
50 um (Fig. 1b and Supplementary Fig. S4). This method leads to
better device performance when compared to graphene pattern-
ing using reactive ion etching (RIE) (Fig. 1c). Light-emitting devices
were fabricated using the graphene coating as electrode in an
alternating current electroluminescent (ACEL) configuration®® (Fig.
1c-e).

The development of graphene in the last decade had a very
high pace, which resulted in different methods for the production
of graphene of different quality and cost. For example single layer
graphene (SLG) and few-layer graphene (FLG) grown by chemical
vapor deposition (CVD) represent the best candidates in terms of
electronic quality and optical transparency, while liquid phase
exfoliated graphene (LEG) is the best candidate in terms of cost,
where optical transparency is not a requirement. Choosing the
appropriate graphene material for an application is the most
critical step to a successful graphene-based flexible and wearable
electronics technology. Therefore, in this study we demonstrate
the performance of our devices with different types of graphene
materials, namely SLG, FLG and LEG. Furthermore, by using
different types of graphene we demonstrate that our devices can
be produced in a more industrial manufacturing compatible way.
For this, we compare graphene grown by CVD (i.e. SLG and FLG
with different ranges of conductivity and transparency) to LEG.
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RESULTS
Capacitive touch sensors

Touch-sensing devices using PP fibres coated with SLG and FLG)
grown by CVD, and with solution processed graphene films
obtained by liquid-exfoliation (LEG) are shown in Figs. 1f and 2a.
They were produced using the R2R-compatible method (Fig. 1a).
The graphene coatings were characterised by means of Raman
spectroscopy (Supplementary Fig. S1, S2 and S3), and optical
transmittance (Supplementary Fig. S4a), confirming the presence
of the different types of graphene on the surface of the PP textile
fibres. Extensive microscopic studies of the surface of graphene-
coated fibres along with detailed characterisation of the electrical
and optical properties were published in refs. 2?3, These studies
included characterisation techniques, such as atomic force
microscopy, scanning electron microscopy, scanning thermal
microscopy, surface profilometry, Raman spectroscopy, electrical
conductivity measurements, optical transmittance measurements
and measurements of the mechanical properties.

There are two main methods of touch-sensing®*: resistive,
where a change in resistance is measured as signal; and capacitive,
where this signal comes from a change in capacitance in between
the electrodes. We have implemented an approach involving the
measurement of the impedance which offers the multi-
functionality of switching between resistance and capacitance
measurement to detect touch. A polar graph of the impedance is
shown in Fig. 2b, with the impedance modulus of 60 MQ and the
phase ¢ =89° for the untouched device. Upon touching, the
modulus reduces by an order of magnitude and the phase drops
to ¢ = 68°, due to the finger shorting the interdigitated electrodes.
When the finger is pressed (ON state) the impedance drops, and
when released (OFF state) the impedance increases back to its
original value with great stability, as can be seen for a FLG device
(Fig. 2c). Even for atomically thin graphene active material, the
excellent performance of the device is retained upon 500
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Fig. 2 Touch sensors: a Photographs of sensors with single layer graphene (SLG), few-layer graphene (FLG) fabricated using the roll-to-roll
(R2R), solution processed graphene films obtained by liquid-exfoliation blade cut (LEG) and using the R2R compatible method. The LEG
sensors using the standard patterning is also shown. b Sketch of the impedance response with and without touching. ¢ Impedance upon
touching versus time for flat FLG device. d Impedance upon touching versus time with repeated touching for FLG device. e Impedance upon
touching versus time with repeated bending for FLG device. f Difference in performance between touch sensors patterned using the R2R
compatible method and sensors patterned using reactive ion etching (RIE) for LEG. g Photo and schematics of position sensitive arrays. h
Voltage drop upon touching vs. time for position sensitive arrays. i Time-resolved rise and fall times upon touching for position sensitive
arrays. The various on/off intervals in ¢, d, e, f, h are due to the difference in the intensity and duration of the user’s finger touching the device

touching cycles, with a clear distinction between the OFF/ON/OFF
states (Fig. 2d). We assessed the flexibility of the touch-sensor by
subjecting it to mechanical stress and, owing to the exceptional
flexibility of graphene, the OFF/ON/OFF device performance
remains unchanged upon 500 bends (Fig. 2e). These results are
consistent, with great reproducibility (Supplementary Fig. S6 for
SLG). To illustrate advantage of our novel R2R approach over
standard RIE patterning, we compared it directly with a RIE-based
device, as is demonstrated in Fig. 2f, showing that a larger ON/OFF
ratio is achieved in the R2R-compatible patterning then in the
standard RIE-based method. This is due to the inherently thicker
nature of LEG when compared with CVD-grown samples, which
makes more difficult to fully remove LEG by RIE. Indeed, after
several RIE runs, the films are still conductive in the OFF state,
meaning that the graphene was not been fully etched away using
RIE. Moreover, the resistance increases after every touch, which is
an indication that with every touch the finger is removing
graphene flakes from the channel, hence erasing percolation
pathways and changing the conductivity of the sample. This
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inhomogeneity makes it less suitable for sensor purposes. This
effect is not shown in LEG with R2R approach because the
photoresist prevented graphene deposition. An even simpler and
more scalable method was also shown, using blade-cutting to
define the pattern, with results comparable with the R2R method
(Supplementary Fig. S7).

Transparent and flexible position-sensitive arrays of graphene-
coated fibres were woven in a squared fabric by orthogonally
intertwining conducting fibres separated by a poly(methyl
methacrylate) (PMMA) dielectric layer, thus providing sensitive
points at their intersections (Fig. 2g). The sensing mechanism, in
this case, is purely self-capacitive, widely used across the
electronics industry (Supplementary section S3). The touch-
sensing performance, quantified as the voltage drop across the
PMMA layer sandwiched between 2 orthogonal graphene fibres, is
shown in Fig. 2h, with very stable ON/OFF states upon several
touches. We analysed the speed of sensing (Fig. 2i) and found a
rise and fall times of 1.4 ms regardless the type of graphene used.
The rise and fall time of our devices are limited by the electronics
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Fig. 3 ACEL devices on textile fibres: a Intensity of the emitted light as a function of bias voltage fitted to the Alfrey-Taylor relation between
ACEL brightness (L) and voltage (V): L = Lo exp(—b/V)""?, where L, and b are empirical constants, fitted with the with good agreement (R* =

0.9982).2

35 Photograph of the device in bending b and torsion c. Change in emission as a function of: d the bending radius and

corresponding fibre strain; e repeated bending cycles; f repeated twisting cycles. Two approaches to ACEL arrays and corresponding photos in
light and dark conditions: g large pixels (scale bars: left 5 mm; right 20 mm) and h small pixels (scale bars: top 10 mm; bottom 1 mm)

used in the measurement, within the range of commercial devices
and rival with the best values in the literature.”’3° In contrast to
miniaturised conventional CMOS electronics that are mounted on
flexible and textile substrtes, smart textiles attained by
intertwined graphene fibres allow advanced detection schemes
that can be readily implemented when complex functions such as
simultaneous multi-touch features are required (Supplementary
Video 1).

Light-emitting devices

Having demonstrated a novel technology for enabling sensing
capabilities of PP fibres, we now proceed to considerably broaden
the spectrum of applications by describing the development of
graphene-enabled textile fibres with light-emitting functionalities
and woven opto-electronic technologies. The ACEL device
configuration was chosen as this technology uniquely enables
the realisation of large-area flexible and foldable graphene light
sources, with good contrast and uniform brightness.>® Further-
more, ACEL devices can display images with high resolution, can
withstand mechanical shocks and a wide range of temperatures,®
making this technology a valuable candidate for smart textiles.
ACEL devices were fabricated on individual graphene-coated PP
fibres which served as bottom electrode. Graphene was

npj Flexible Electronics (2018) 25

subsequently covered by an emitter layer of commercially
available Cu-doped zinc sulfide (ZnS:Cu), an insulating layer of
BaTiOs and a top electrode (Fig. 1c, e). Further details about the
coating techniques and optimisation of the devices can be found
in Supplementary section S5 and Fig. S10-12 therein. Upon
excitation with an AC voltage, light is emitted from the ZnS:Cu
layer due to impact ionisation and recombination of electron-hole
pairs.>” The emission spectra is in the visible, with an emission
peak around 500 nm (Supplementary Fig. S11) and average light
intensity dependent on the applied voltage, as typical for ACEL
devices (Fig. 3a).3° Figures 1e and 3b, ¢ show photos of light-
emitting devices on individual fibres, as well as text displayed on
fibre achieved by patterning the graphene electrode with features
down to 100 um.

To ascertain the mechanical properties of the light-emitting
textile fibres we have subjected the fibres to different types of
mechanical stress such as bending, torsion and cyclic loading,
assessing the changes in the average intensity (Al) as compared to
the average light intensity before applying the stress (lp). As
shown in Fig. 3d, the change in emission upon bending was
negligible up to a 10 mm radius, similar to the radius of a human
finger. The mechanical resilience of the device was studied in the
form of repeated bending (Fig. 3b, e) and torsion tests (Fig. 3¢, f)
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between the flat state and the bent or twisted state. For both
types of stress, only slight changes were observed, demonstrating
the suitability of these devices for smart textile technology.

Finally, to demonstrate the potential of light-emitting textile
fibres for fabric-enabled pixels for displays, we fabricated arrays of
light-emitting fibres. Two types of arrays were built: (1) fibres
coated with graphene electrode, ZnS:Cu and BaTiO;, with large
pixels (=6 mm?) at the intersection with orthogonal silver-coated
fibres (Fig. 3g); and (2) fibres coated with silver, ZnS:Cu and BaTiOs,
with smaller pixels (0.25 mm?) at the intersection with fibres with
graphene (Fig. 3h). Both device configurations have high
performance in terms of light intensity and mechanical properties,
similar to the light-emitting fibres presented in Fig. 3a—f. This
illustrates the possibility of creating individual pixels and to scale
the size of the pixels down without changing the approach.

DISCUSSION

In summary, we have demonstrated transparent, flexible and
durable graphene-enabled touch-sensors and light-emitting
devices completely integrated on textile fibres. Both types of
wearable sensors were fabricated using methods that are
compatible with roll-to-roll and printing techniques, highlighting
the potential for these to be scaled up and meet industry
requirements. We also verified that the touch sensors patterned
using a roll-to-roll-compatible process outperform those fabri-
cated with conventional lithography. We have fabricated arrays of
both types of devices to show that these devices can be
integrated in a woven fabric. The resulting intertwined devices
can be used for fully flexible and highly sensitive position sensors
and displays with different pixel sizes.

Our results constitute a new step towards the realisation of
electronics directly into textile, and open new possibilities for the
use of smart textiles in many applications, such as electronic skin
and wearable electronics.

METHODS

Graphene production

SLG was grown by chemical vapour deposition on Cu, using a furnace (MTI
Instruments) with a quartz tube. After the Cu is placed in a crucible, the
system is pumped down and flush with Ar to remove oxygen. After
ramping up the temperature (33°/min) up to 1000 °C, the Cu is annealed
under an Ar/H, atmosphere to remove native oxides and increase grain
size. Upon introduction of CH,, graphene growth is started and maintained
for 15 min. After that, CH, is switched off and the furnace is let to cool
down to room temperature under Ar flow. Few-layer graphene (FLG) on Ni
was purchased (Graphene Supermarket). Liquid-exfoliated graphene (LEG)
was produced by shear exfoliation of graphite powder (Graphene
Supermarket). Graphite powder was suspended in water and stabilised
with the help of sodium cholate (Sigma-Aldrich). It was blended for 2 h at
6000 rpm with an L5 High Shear Mixer (Silverson Ltd), centrifuged for an
hour at 8000 rpm, and then decanted.

Graphene transfer

Improved graphene adhesion can be achieved by subjecting the fibres to a
mild oxygen plasma or to ultraviolet light in the presence of oxygen, prior
to the graphene transfer. This increases hydrophilicity. SLG and FLG were
transferred to the PP fibres as previously described.?® The fibres were
rinsed in acetone and isopropanol. LEG suspensions were filtered on a
cellulose membrane. This membrane was dipped in water, placed on top
of the fibre and dry gun from the backside, releasing the graphene film.
This process was repeated 2-3 times to ensure conductive films. Raman
spectra of the PP fibres before and after the graphene coating are given in
Supplementary Fig. S1, with details around the G peak area in
Supplementary Fig. S2, denoting the presence of graphene. Raman of
the same types of graphene on SiO, are shown in Supplementary Fig. S3.
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Textile fibres. Tape-shaped polypropylene (PP, 0.03 mm thick and 2.4 mm
wide) fibres were produced by Centexbel using a monofilament extrusion
line, reeled onto a bobbin and cut to the desired length.

Touch-sensors

Aiming at a scalable manufacturing of these devices, we developed a
process which is compatible with roll-to-roll fabrication. In this method
(route (a) in Fig. 1) a photoresist layer is deposited on the fibre and
patterned prior to the deposition of graphene. The photoresist, together
with the supporting PMMA layer used for the transfer of CVD graphene,
was simultaneously removed with acetone. This resulted in an effective
transfer of the pattern to all the graphene materials used to coat the PP
fibres. Well-defined interdigitated electrodes with features ranging from
100 um down to 50 um wide and pitch from 1000 um of 250 um are shown
in Supplementary Fig. S5.

Light-emitting devices

Graphene was contacted with silver paint and dried in air at 75 °C. ZnS:Cu
and BaTiO3; were purchased from DuPont Inc., spun at 2000 and 3500 rpm,
respectively, and dried in air at 75 °C. Silver paint was used for the rear
contact.?® Despite the inherent roughness of the fibres (Supplementary
Fig. S8), these light-emitting devices are easily fabricated by spin coating
(surface analysis and emission spectra in Supplementary Figs. $9-512), with
compatibility with screen-printing and roll-to-roll processes, allowing also
for a possible encapsulation due to the planar nature of the materials and
the resulting devices.

Patterning

UV-lithography was performed by means of a laser-writer (Microwriter ML
from Durham Magneto Optics Ltd). The graphene was coated with
Microposit S1813 photoresist (MicroChem Corp.) and baked for 60s at
120°C. The resist was developed with MF-319 developer (MicroChem
Corp.) and immersed in DI water to stop the developing. Then the samples
were introduced into a JLS Reactive lon Etching to perform an O, plasma
(4 min at 20 W for the ACEL devices and 30 s at 30 W for the touch-sensors)
to remove the graphene.

Optical, thermal and electrical characterisation

The light-emitting devices were powered with an ELD-250 Interver from
ENZ electronics. The emission was collected through an Olympus BXiS
microscope mounted with an Olympus MPLFLN lens attached to an
ACTON-SP2500 spectrometer (1800 g/mm, 500 nm Blaze) with a PIXIS 2KB
eXcelon CCD. Raman, transmittance and light emission spectroscopy were
performed using a custom-built setup®® based on an Olympus coupled to
Princeton Instruments ACTON-SP2500 spectrometer (1800 g/mm, 500 nm
Blaze) with a PIXIS-400 eXcelon CCD. The optics was calibrated with an
IntelliCall® calibration source. The impedance was measured with a
HM8118 LCR Bridge (Rohde & Schwarz). The position sensing arrays and
devices were measured with a commercial PICkit Analyzer (MicroChip
Technology Inc), a commercially available Charge Time Measurement Unit
(CTMU) microcontroller and an algorithm to recognise the touch
(Supplementary section on Position-sensitive arrays).

Additional characterisation

Fibre profiles and spin coating thickness data were acquired with an
AlphaStep ® D-500 Stylus profiler from KLA Tencor Corp. Raman Spectra
was taken with a inVia Raman microscope from Renishaw Plc. SEM images
were acquired with a Hitachi SU-70 scanning electron microscope at an
accelerating voltage of 4kV, working distance of 6200 um, emission
current of 44,000 nA, and magnifications of x100, X200, x500, x1000 and
x10,000.
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