Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying
authors Wang, ZP; Ananias, D; Carne-Sanchez, A; Brites, CDS; Imaz, I; Maspoch, D; Rocha, J; Carlos, LD
nationality International
journal ADVANCED FUNCTIONAL MATERIALS
keywords CRYOGENIC TEMPERATURE-MEASUREMENT; NANOSCALE THERMOMETRY; COORDINATION POLYMERS; DRUG-DELIVERY; LUMINESCENCE; SENSORS; NANOPARTICLES; PHOTOLUMINESCENCE; NANOCRYSTALS; FLUORESCENCE
abstract Accurate, noninvasive, and self-referenced temperature measurements at the sub-micrometer scale are of great interest, prompted by the ever-growing demands in the fields of nanotechnology and nanomedicine. The thermal dependence of the phosphor's luminescence provides high detection sensitivity and spatial resolution with short acquisition times in, e.g., biological fluids, strong electromagnetic fields, and fast-moving objects. Here, it is shown that nanoparticles of [(Tb-0.914 Eu-0.086)(2)(PDA)(3)(H2O)]center dot 2H(2)O (PDA = 1,4-phenylenediacetic acid), the first lanthanide-organic framework prepared by the spray-drying method, are excellent nanothermometers operating in the solid state in the 10-325 K range (quantum yield of 0.25 at 370 nm, at room temperature). Intriguingly, this system is the most sensitive cryogenic nanothermometer reported so far, combining high sensitivity (up to 5.96 +/- 0.04% K-1 at 25 K), reproducibility (in excess of 99%), and low-temperature uncertainty (0.02 K at 25 K).
publisher WILEY-V C H VERLAG GMBH
issn 1616-301X
year published 2015
volume 25
issue 19
beginning page 2824
ending page 2830
digital object identifier (doi) 10.1002/adfm.201500518
web of science category Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter
subject category Chemistry; Science & Technology - Other Topics; Materials Science; Physics
unique article identifier WOS:000354626800004
  ciceco authors
  impact metrics
journal analysis (jcr 2017):
journal impact factor 13.325
5 year journal impact factor 13.274
category normalized journal impact factor percentile 94.154
dimensions (citation analysis):
altmetrics (social interaction):



 


Sponsors

1suponsers_list_ciceco.jpg