Testing single extraction methods and in vitro tests to assess the geochemical reactivity and human bioaccessibility of silver in urban soils amended with silver nanoparticles
authors Cruz, N; Rodrigues, SM; Tavares, D; Monteiro, RJR; Carvalho, L; Trindade, T; Duarte, AC; Pereira, E; Romkens, PFAM
nationality International
journal CHEMOSPHERE
author keywords Soil pollution; Engineered silver nanoparticles; Geochemical reactivity; In vitro bioaccessibility; Bioavailability
keywords ENGINEERED NANOMATERIALS; RISK-ASSESSMENT; SORPTION; RELEASE; CONTAMINANTS; VALIDATION; SPECIATION; ELEMENTS; CADMIUM; FACADES
abstract To assess if the geochemical reactivity and human bioaccessibility of silver nanoparticles (AgNPs) in soils can be determined by routine soil tests commonly applied to other metals in soil, colloidal Ag was introduced to five pots containing urban soils (equivalent to 6.8 mg Ag kg(-1) soil). Following a 45 days stabilization period, the geochemical reactivity was determined by extraction using 0.43 M and 2 M HNO3. The bioaccessibility of AgNPs was evaluated using the Simplified Bioaccessibility Extraction Test (SBET) the "Unified BARGE Method" (UBM), and two simulated lung fluids (modified Gamble's solution (MGS) and artificial lysosomal fluid (ALF)). The amount of Ag extracted by 0.43 M and 2 M HNO3 soil tests was <8% and <50%, respectively of the total amount of Ag added to soils suggesting that the reactivity of Ag present in the soil can be relatively low. The bioaccessibility of Ag as determined by the four in vitro tests ranged from 17% (ALF extraction) to 99% (SBET) indicating that almost all Ag can be released from soil due to specific interactions with the organic ligands present in the simulated body fluids. This study shows that to develop sound soil risk evaluations regarding soil contamination with AgNPs, aspects of Ag biochemistry need to be considered, particularly when linking commonly applied soil tests to human risk assessment. (C) 2015 Elsevier Ltd. All rights reserved.
publisher PERGAMON-ELSEVIER SCIENCE LTD
issn 0045-6535
year published 2015
volume 135
beginning page 304
ending page 311
digital object identifier (doi) 10.1016/j.chemosphere.2015.04.071
web of science category Environmental Sciences
subject category Environmental Sciences & Ecology
unique article identifier WOS:000356740900039
  ciceco authors
  impact metrics
journal analysis (jcr 2017):
journal impact factor 4.427
5 year journal impact factor 4.551
category normalized journal impact factor percentile 85.744
dimensions (citation analysis):
altmetrics (social interaction):



 


Sponsors

1suponsers_list_ciceco.jpg