Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts
authors Belchior, DCV; Sintra, TE; Carvalho, PJ; Soromenho, MRC; Esperanca, JMSS; Ventura, SPM; Rogers, RD; Coutinho, JAP; Freire, MG
nationality International
journal JOURNAL OF CHEMICAL PHYSICS
keywords MUTUAL SOLUBILITIES; 2-PHASE SYSTEMS; PHASE-DIAGRAMS; MICELLE FORMATION; SELF-AGGREGATION; CATION SYMMETRY; 298.15 K; WATER; BEHAVIOR; SEPARATION
abstract This work provides a comprehensive evaluation of the effect of the cation alkyl side chain length of the 1-alkyl-3-methylimidazolium chloride series ([C(n)C(1)im] Cl, n = 2-14) of ionic liquids (ILs) on their capability to form aqueous biphasic systems (ABSs) with salts and self-aggregation derived properties. The liquid-liquid phase behavior of ternary systems composed of [C(n)C(1)im] Cl, water, and K3PO4 or K2CO3 and the respective Setschenow salting-out coefficients (k(s)), a quantitative measure of the two-phase formation ability, were determined. An odd-even effect in the k(s) values along the number of methylene groups of the longest IL cation alkyl side chainwas identified for theABSformed by K2CO3, a weaker salting-out agent where the phenomenon is clearly identified. In general, cations with even alkyl side chains, being likely to display higher molar volumes, are more easily salted-out and thus more prone to undergo phase separation. The odd-even effect in the k(s) values is, however, more significant in ILs up to n = 6, where the nanostructuration/nanosegregation of ILs plays a less relevant role. Still, with the [C(n)C(1)im] Cl (n = 7-14) series of ILs, an odd-even effect was also identified in the ILs' ionization degree, molar conductivity, and conductivity at infinite dilution. In summary, it is shown here that the ILs' odd-even effect occurs in IL aqueous solutions and not just in neat ILs, an already well-established phenomenon occurring in a series of ILs' properties described as a result of the orientation of the terminal methyl groups to the imidazolium ring cation and consequent effect in the ILs' cohesive energy. Published by AIP Publishing.
publisher AMER INST PHYSICS
issn 0021-9606
year published 2018
volume 148
issue 19
digital object identifier (doi) 10.1063/1.5012020
web of science category Chemistry, Physical; Physics, Atomic, Molecular & Chemical
subject category Chemistry; Physics
unique article identifier WOS:000432853800046
  ciceco authors
  impact metrics
journal analysis (jcr 2017):
journal impact factor 2.843
5 year journal impact factor 2.743
category normalized journal impact factor percentile 60.149
dimensions (citation analysis):
altmetrics (social interaction):



 


Sponsors

1suponsers_list_ciceco.jpg