authors |
Lavrador, P; Gaspar, VM; Mano, JF |
nationality |
International |
journal |
JOURNAL OF CONTROLLED RELEASE |
author keywords |
Stimuli-responsive, nanoparticles; Bone therapeutics delivery; Controlled release |
keywords |
TARGETED DRUG-DELIVERY; TUMOR MICROENVIRONMENT; CATHEPSIN-K; THERMOSENSITIVE NANOPARTICLES; ANTIINFLAMMATORY PEPTIDES; MATRIX METALLOPROTEINASES; BIOLOGICAL BARRIERS; INTRACELLULAR DRUG; POLYMERIC MICELLES; CONTROLLED-RELEASE |
abstract |
The development of stimuli-responsive nanomedicines with tunable cargo release is gathering an increased applicability in bone regeneration and precision biomedicine. Yet, the formulation of nanocarriers that explore skeletal-specific stimuli remains remarkably challenging to materialize due to several endogenous and disease-specific barriers that must be considered during particle design stages. Such anatomo-physiological constrains ultimately hinder nanocarriers bioavailability in target bone tissues and impact the overall therapeutic outcome. This review aims to showcase and critically discuss the hurdles encountered upon responsive nanocarriers delivery in the context of skeletal diseases or tissue regeneration scenarios. Such focus is complemented with an in-depth and up-to-date analysis of advances in the development of stimuli-responsive, bone-focused delivery systems. In a holistic perspective, a deeper knowledge of human osteology combined with advances in materials functionalization via simple precision-chemistry is envisioned to incite the manufacture of stimuli-triggered nanomedicines with more realistic potential for clinical translation. |
publisher |
ELSEVIER SCIENCE BV |
issn |
0168-3659 |
year published |
2018 |
volume |
273 |
beginning page |
51 |
ending page |
67 |
digital object identifier (doi) |
10.1016/j.jconrel.2018.01.021 |
web of science category |
Chemistry, Multidisciplinary; Pharmacology & Pharmacy |
subject category |
Chemistry; Pharmacology & Pharmacy |
unique article identifier |
WOS:000426298100006
|