Hydrothermal Synthesis of Rare-Earth Modified Titania: Influence on Phase Composition, Optical Properties, and Photocatalytic Activity
authors Rozman, N; Tobaldi, DM; Cvelbar, U; Puliyalil, H; Labrincha, JA; Legat, A; Sever Skapin, A
nationality International
journal MATERIALS
author keywords TiO2; photocatalytic activity; rare earths; modification; visible light activity
keywords RUTILE TIO2 NANORODS; DOPED TIO2; WATER-TREATMENT; DIOXIDE; DEGRADATION; OXIDATION; FABRICATION; TECHNOLOGY; MECHANISM; SURFACE
abstract In order to expand the use of titania indoor as well as to increase its overall performance, narrowing the band gap is one of the possibilities to achieve this. Modifying with rare earths (REs) has been relatively unexplored, especially the modification of rutile with rare earth cations. The aim of this study was to find the influence of the modification of TiO2 with rare earths on its structural, optical, morphological, and photocatalytic properties. Titania was synthesized using TiOSO4 as the source of titanium via hydrothermal synthesis procedure at low temperature (200 degrees C) and modified with selected rare earth elements, namely, Ce, La, and Gd. Structural properties of samples were determined by X-ray powder diffraction (XRD), and the phase ratio was calculated using the Rietveld method. Optical properties were analyzed by ultraviolet and visible light (UV-Vis) spectroscopy. Field emission scanning electron microscope (FE-SEM) was used to determine the morphological properties of samples and to estimate the size of primary crystals. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical bonding properties of samples. Photocatalytic activity of the prepared photocatalysts as well as the titania available on the market (P25) was measured in three different setups, assessing volatile organic compound (VOC) degradation, NOx abatement, and water purification. It was found out that modification with rare earth elements slows down the transformation of anatase and brookite to rutile. Whereas the unmodified sample was composed of only rutile, La- and Gd-modified samples contained anatase and rutile, and Ce-modified samples consisted of anatase, brookite, and rutile. Modification with rare earth metals has turned out to be detrimental to photocatalytic activity. In all cases, pure TiO2 outperformed the modified samples. Cerium-modified TiO2 was the least active sample, despite having a light absorption tail up to 585 nm wavelength. La- and Gd-modified samples did not show a significant shift in light absorption when compared to the pure TiO2 sample. The reason for the lower activity of modified samples was attributed to a greater Ti3+/Ti4+ ratio and a large amount of hydroxyl oxygen found in pure TiO2. All the modified samples had a smaller Ti3+/Ti4+ ratio and less hydroxyl oxygen.
publisher MDPI
issn 1996-1944
year published 2019
volume 12
issue 5
digital object identifier (doi) 10.3390/ma12050713
web of science category Materials Science, Multidisciplinary
subject category Materials Science
unique article identifier WOS:000462543700029
  ciceco authors
  impact metrics
journal analysis (jcr 2017):
journal impact factor 2.467
5 year journal impact factor 3.325
category normalized journal impact factor percentile 61.228
dimensions (citation analysis):
altmetrics (social interaction):



 


Sponsors

1suponsers_list_ciceco.jpg