Biobased films of nanocellulose and mango leaf extract for active food packaging: Supercritical impregnation versus solvent casting
authors Cristina Cejudo Bastante, Nuno H.C.S. Silva, Lourdes Casas Cardoso, Casimiro Mantell Serrano, Enrique J. Martínez de la Ossa, Carmen S.R. Freire, Carla Vilela
nationality International
journal Food Hydrocolloids
abstract Antioxidant and antimicrobial free-standing films composed of nanofibrillated cellulose (NFC) and a polyphenolic-rich extract, viz. mango leaf extract (MLE), were produced via supercritical solvent impregnation (SSI) and conventional solvent casting film-processing methodologies. The CO2-assisted impregnation of NFC with MLE created robust films with thermal stability up to 250 ◦C, good mechanical performance (Young’s modulus > 4.7 GPa), UV-light barrier properties, antioxidant capacity with maximum inhibition percentage of ca. 84%, and antimicrobial activity against Staphylococcus aureus (growth inhibition ≈ 37%) and Escherichia coli (growth inhibition ≈ 91%). The comparison of the NFC/MLE films prepared by SSI with those fabricated via solvent casting shows a clear advantage of the SSI methodology. Particularly, the antioxidant and antimicrobial activities are visibly higher in the films fabricated by the CO2-assisted impregnation of MLE into NFC. In fact, for the SSI films, the MLE components are mostly adsorbed at the surface and not in the bulk of the biopolymeric matrix, which translates into faster migrations and, hence, higher active properties. All these findings evinced the potential performance of the NFC/MLE films prepared by the eco-friendly SSI as UV-blocking, antioxidant, and antimicrobial bio-based materials for application as sustainable active food packaging.
publisher Elsevier
year published 2021
volume 117
beginning page 106709
digital object identifier (doi) 10.1016/j.foodhyd.2021.106709

Sponsors

1suponsers_list_ciceco.jpg