Relevance of the sterilization-induced effects on the properties of different hydroxyapatite nanoparticles and assessment of the osteoblastic cell response
authors Santos, C; Gomes, PS; Duarte, JA; Franke, RP; Almeida, MM; Costa, MEV; Fernandes, MH
nationality International
journal JOURNAL OF THE ROYAL SOCIETY INTERFACE
author keywords hydroxyapatite nanoparticles; physicochemical properties; autoclave sterilization; osteoblastic response
keywords POTASSIUM CITRATE SUPPLEMENTATION; CALCIUM-PHOSPHATE; BONE METABOLISM; HYDROTHERMAL SYNTHESIS; APATITE NANOCRYSTALS; POSTMENOPAUSAL WOMEN; SIZE; CARBONATE; CRYSTALS; ORTHOPHOSPHATES
abstract Hydroxyapatite (Hap) is a calcium phosphate with a chemical formula that closely resembles that of the mineral constituents found in hard tissues, thereby explaining its natural biocompatibility and wide biomedical use. Nanostructured Hap materials appear to present a good performance in bone tissue applications because of their ability to mimic the dimensions of bone components. However, bone cell response to individual nanoparticles and/or nanoparticle aggregates lost from these materials is largely unknown and shows great variability. This work addresses the preparation and characterization of two different Hap nanoparticles and their interaction with osteoblastic cells. Hap particles were produced by a wet chemical synthesis (WCS) at 37 degrees C and by hydrothermal synthesis (HS) at 180 degrees C. As the ultimate in vivo applications require a sterilization step, the synthesized particles were characterized 'as prepared' and after sterilization (autoclaving, 120 degrees C, 20 min). WCS and HS particles differ in their morphological (size and shape) and physicochemical properties. The sterilization modified markedly the shape, size and aggregation state of WCS nanoparticles. Both particles were readily internalized by osteoblastic cells by endocytosis, and showed a low intracellular dissolution rate. Concentrations of WCS and HS particles less than 500 mu g ml(-1) did not affect cell proliferation, F-actin cytoskeleton organization and apoptosis rate and increased the gene expression of alkaline phosphatase and BMP-2. The two particles presented some differences in the elicited cell response. In conclusion, WCS and HS particles might exhibit an interesting profile for bone tissue applications. Results suggest the relevance of a proper particle characterization, and the interest of an individual nanoparticle targeted research.
publisher ROYAL SOC
issn 1742-5689
year published 2012
volume 9
issue 77
beginning page 3397
ending page 3410
digital object identifier (doi) 10.1098/rsif.2012.0487
web of science category Multidisciplinary Sciences
subject category Science & Technology - Other Topics
unique article identifier WOS:000310573100023
  ciceco authors
  impact metrics
times cited (wos core): 17
journal impact factor (jcr 2016): 3.579
5 year journal impact factor (jcr 2016): 4.128
category normalized journal impact factor percentile (jcr 2016): 82.031
altmetrics:



 


Events
Sponsors

1suponsers_list_ciceco.jpg