Oxygen evolution on perovskite-type cobaltite anodes: an assessment of materials science-related aspects
authors Kovalevsky, AV; Sviridov, DV; Kharton, VV; Naumovich, EN; Frade, JR
editors Vilarinho, PM
nationality International
journal ADVANCED MATERIALS FORUM III, PTS 1 AND 2
author keywords oxygen evolution; electrochemical activity; perovskite; oxygen deficiency; electronic conductivity; cobaltite
keywords OXIDES
abstract Ceramic anodes, made of perovskite-type rare-earth and strontium cobaltites substituted in both sublattices, exhibit a high electrocatalytic activity towards oxygen evolution in alkaline media. This work analyzes the relationships between cation composition, defect structure, electronic conductivity and electrochemical performance for a wide group of perovskite-like cobaltites, including Ln(1-y)A(y)CoO(3-delta) (Ln= Pr, Nd, Sm; A= Sr, Ca; y= 0-0.4), La1-x-ySrxBiyCoO3-delta (x= 0-0.6, y= 0-0.1), La0.7-xSr0.3CoO3-delta (x= 0-0.10), Sr1-xBaxCoO3-delta (x= 0.1-0.2) and SrCo1-yMyO3-delta (M=Fe, Ni, Ti, Cu; y= 0.1-0.6). The materials were prepared by the standard ceramic technique and characterized employing XRD, TGA, iodometric titration, and total conductivity measurements. A relatively high electrochemical performance in alkaline solutions was observed for (La,Sr)CoO3-based compositions with a moderate A-site deficiency. For SrCoO3-based materials, an increase in the oxygen evolution rate was found when co-substituting cobalt with several transition metal cations, such as Fe3+/4+ and Cu2+/3+. The results show that, in general, the key composition-related factors influencing electrochemical activity in alkaline media include the oxygen vacancy concentration, the average positive charge density in the crystal lattice, and possible blocking of active sites on the electrode surface.
publisher TRANS TECH PUBLICATIONS LTD
issn 0255-5476
year published 2006
volume 514-516
beginning page 377
ending page 381
web of science category Materials Science, Multidisciplinary
subject category Materials Science
unique article identifier WOS:000238056400077

Sponsors

1suponsers_list_ciceco.jpg