Recovery of an antidepressant from pharmaceutical wastes using ionic liquid-based aqueous biphasic systems
authors Zawadzki, M; Silva, FAE; Domanska, U; Coutinho, JAP; Ventura, SPM
nationality International
journal GREEN CHEMISTRY
keywords 2-PHASE SYSTEMS; EXTRACTION; BOOST; SEPARATION; SOLVENTS
abstract This study is aimed at developing a sustainable process for the recovery of valuable drugs from pharmaceutical wastes using ionic liquid (IL)-based aqueous biphasic systems (ABS). Because in pharmaceutical wastes, excipients represent the major contaminants, the search for selective routes for their elimination is of primordial relevance and for that purpose IL-based ABS were evaluated. The effects of different process parameters, namely the IL nature, pH and mixture composition used in the extraction system, were studied and the process was optimized to maximize the extraction of the antidepressant from pharmaceutical wastes. Moreover, the maximum amount of amitriptyline able to be processed using such systems was assessed. The set of ABS investigated herein revealed a high extraction performance, as indicated by the outstanding logarithmic functions of the amitriptilyne partition coefficients ranging from 2.41 +/- 0.05 to >2.5 and extraction efficiencies between 66% +/- 1% and 100%. The best ABS and conditions were considered in the development of an integrated multi-step purification process. The process here proposed comprises three main stages as follows: the solid-liquid extraction of the antidepressant from ADT 25 pills, its purification using the optimal IL-based ABS and the antidepressant isolation by precipitation with anti-solvent. After the removal of most water insoluble excipients in the first step, with the selected IL-based ABS, it was possible to further eliminate water soluble contaminants. A high capability of extraction and purification, leading to the selective separation of amitriptyline hydrochloride from the main contaminants contained in solid pharmaceutical wastes was achieved. Finally, the isolation of the amitriptilyne in a pure state was successfully accomplished through precipitation with the anti-solvent.
publisher ROYAL SOC CHEMISTRY
issn 1463-9262
year published 2016
volume 18
issue 12
beginning page 3527
ending page 3536
digital object identifier (doi) 10.1039/c5gc03052h
web of science category Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
subject category Chemistry; Science & Technology - Other Topics
unique article identifier WOS:000378269200010
  ciceco authors
  impact metrics
journal analysis (jcr 2017):
journal impact factor 8.586
5 year journal impact factor 8.717
category normalized journal impact factor percentile 91.733
dimensions (citation analysis):
altmetrics (social interaction):



 


Apoio

1suponsers_list_ciceco.jpg