Enantioselective Anion Recognition by Chiral Halogen-Bonding [2]Rotaxa nes
authors Lim, JYC; Marques, I; Felix, V; Beer, PD
nationality International
journal JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
keywords MOLECULAR-DYNAMICS SIMULATIONS; ACTIVE-TEMPLATE SYNTHESIS; ION-PAIR RECOGNITION; MACROCYCLIC RECEPTORS; ASYMMETRIC CATALYSIS; ENANTIOMERIC EXCESS; STRUCTURAL BASIS; METAL CATALYSIS; CEPACIA LIPASE; ROTAXANE
abstract The application of chiral interlocked host molecules for discrimination of guest enantiomers has been largely overlooked which is surprising given their unique three-dimensional binding cavities capable of guest encapsulation. Herein, we combined the stringent linear geometric interaction constraints of halogen bonding (XB), the noncovalent interaction between an electrophilic halogen atom and a Lewis base, with highly preorganized and conformation ally restricted chiral cavities of [2]rotaxanes to achieve enantioselective anion recognition. Representing the first detailed investigation of the use of chiral X.B rotaxanes for this purpose, extensive H-1 NMR binding studies and molecular dynamics (MD) simulation experiments revealed that the chiral rotaxane cavity significantly enhances enantiodiscrimination compared to the non-interlocked free axle and macrocycle components. Furthermore, by examining the enantioselectivities of a family of structurally similar XB [2]rotaxanes containing different combinations of chiral and achiral inacrocycle and axle components, the dominant influence of the chiral macrocycle in our rotaxane design for determining the effectiveness of chiral discrimination is demonstrated. MD simulations reveal the crucial geometric roles played by the XB interactions in orientating the bound enantiomeric anion guests for chiral selectivity) as well as the critical importance of the anions' hydration shells in governing binding affinity and enantiodiscrimination.
publisher AMER CHEMICAL SOC
issn Feb-63
year published 2017
volume 139
issue 35
beginning page 12228
ending page 12239
digital object identifier (doi) 10.1021/jacs.7b06144
web of science category Chemistry, Multidisciplinary
subject category Chemistry
unique article identifier WOS:000410255600023
  ciceco authors
  impact metrics
journal analysis (jcr 2017):
journal impact factor 14.357
5 year journal impact factor 13.613
category normalized journal impact factor percentile 95.614
dimensions (citation analysis):
altmetrics (social interaction):



 


Apoio

1suponsers_list_ciceco.jpg