Recent advances on open fluidic systems for biomedical applications: A review
authors Oliveira, NM; Vilabril, S; Oliveira, MB; Reis, RL; Mano, JF
nationality International
journal MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS
author keywords Microfluidics; Open fluidics; Superhydrophobicity; Superhydrophilicity; Fluid confinement; Lab on a chip
keywords SUPERHYDROPHOBIC-PATTERNED SURFACE; SPONTANEOUS CAPILLARY-FLOW; ON-A-CHIP; RECENT PROGRESS; DRIVEN FLOW; MICROFLUIDIC TRANSPORT; BIOINSPIRED SURFACES; STRUCTURED SURFACES; ANALYTICAL DEVICES; DROPLET-ARRAY
abstract Microfluidics has become an important tool to engineer microenvironments with high precision, comprising devices and methods for controlling and manipulating fluids at the submillimeter scale. A specific branch of microfluidics comprises open fluidic systems, which is mainly characterized by displaying a higher air/liquid interface when compared with traditional closed-channel setups. The use of open channel systems has enabled the design of singular architectures in devices that are simple to fabricate and to clean. Enhanced functionality and accessibility for liquid handling are additional advantages inputted to technologies based on open fluidics. While benchmarked against closed fluidics approaches, the use of directly accessible channels decreases the risk of clogging and bubble-driven flow perturbation. In this review, we discuss the advantages of open fluidics systems when compared to their closed fluidics counterparts. Platforms are analyzed in two separated groups based on different confinement principles: wall-based physical confinement and wettability-contrast confinement. The physical confinement group comprises both open and traditional microfluidics; examples based on open channels with rectangular and triangular cross-section, suspended microfluidics, and the use of narrow edge of a solid surface for fluid confinement are addressed. The second group covers (super)hydrophilic/(super) hydrophobic patterned surfaces, and examples based on polymer-, textile- and paper-based microfluidic devices are explored. The technologies described in this review are critically discussed concerning devices' performance and versatility, manufacturing techniques and fluid transport/manipulation methods. A gather-up of recent biomedical applications of open fluidics devices is also presented.
publisher ELSEVIER
issn 0928-4931
isbn 1873-0191
year published 2019
volume 97
beginning page 851
ending page 863
digital object identifier (doi) 10.1016/j.msec.2018.12.040
web of science category Materials Science, Biomaterials
subject category Materials Science
unique article identifier WOS:000457952800085
  ciceco authors
  impact metrics
journal analysis (jcr 2019):
journal impact factor 5.88
5 year journal impact factor 5.364
category normalized journal impact factor percentile 82.895
dimensions (citation analysis):
altmetrics (social interaction):



 


Apoio

1suponsers_list_ciceco.jpg