Temperature-Induced Structural Transformations in Undoped and Eu3+ -Doped Ruddlesden-Popper Phases Sr2SnO4 and Sr3Sn2O7: Relation to the Impedance and Luminescence Behaviors
authors Stanulis, A; Katelnikovas, A; Salak, AN; Seibutas, P; Ivanov, M; Grigalaitis, R; Banys, J; Kareiva, A; Ramanauskas, R; Barron, AR
nationality International
journal INORGANIC CHEMISTRY
keywords NEUTRON POWDER DIFFRACTION; BROMATE ENNEAHYDRATE; FERROELECTRICITY; ENERGY; PHOTOLUMINESCENCE; PEROVSKITES; TRANSITIONS; ORIGIN; OXIDES; SERIES
abstract We report that luminescence of Eu3+ ion incorporated into Ruddlesden-Popper phases allows monitoring phase transition in powders (instead of single crystals), in a time-efficient manner (compared to neutron diffraction), and importantly, with greater sensitivity than previous methods. Crystal structure and dielectric response of undoped and 0.5%Eu3+-doped Sr3Sn2O7 ceramics were studied as a function of temperature over the temperature range of 300-800 K. The luminescence studies of 0.5%Eu3+-doped Sr2SnO4 and Sr3Sn2O7 samples were performed in the temperature range of 80-500 K. These results were compared with the respective dependences for the undoped compounds. The structural transformations in 0.5%Eu3+-doped Sr3Sn2O7 were found at 390 and 740 K. The former is associated with the isostructural atomic rearrangement that resulted in a negative thermal expansion along two of three orthorhombic crystallographic axes, while the latter corresponds to the structural transition from the orthorhombic Amam phase to the tetragonal I4/mmm one. A similar temperature behavior with the structural transformations in the same temperature ranges was observed in undoped Sr3Sn2O7, although the values of lattice parameters of the Eu3+-doped and undoped compounds were found to be slightly different indicating an incorporation of europium in the crystal lattice. A dielectric anomaly associated with a structural phase transition was observed in Sr(3)Sn(2)O(7 )at 390 K. Optical measurements performed over a wide temperature range demonstrated a clear correlation between structural transformations in Eu3+-doped Sr2SnO4 and Sr3Sn2O7 and the temperature anomalies of their luminescence spectra, suggesting the efficacy of this method for the determination of subtle phase transformations.
publisher AMER CHEMICAL SOC
issn 0020-1669
year published 2019
volume 58
issue 17
beginning page 11410
ending page 11419
digital object identifier (doi) 10.1021/acs.inorgchem.9b00958
web of science category Chemistry, Inorganic & Nuclear
subject category Chemistry
unique article identifier WOS:000484066500017
  ciceco authors
  impact metrics
journal analysis (jcr 2017):
journal impact factor 4.700
5 year journal impact factor 4.513
category normalized journal impact factor percentile 90.000
dimensions (citation analysis):
altmetrics (social interaction):



 


Apoio

1suponsers_list_ciceco.jpg