Effect of surfactants on the optical and magnetic properties of cobalt-zinc ferrite Co0.5Zn0.5Fe2O4
authors El Foulani, AH; Aamouche, A; Mohseni, F; Amaral, JS; Tobaldi, DM; Pullar, RC
nationality International
journal JOURNAL OF ALLOYS AND COMPOUNDS
author keywords Magnetism; Surfactant; Cobalt zinc ferrite; UV-Vis spectroscopy; Optical band gap
keywords CO1-XZNXFE2O4 NANOPARTICLES; SIZE; DEGRADATION; TEMPERATURE; EVOLUTION; REMOVAL
abstract Nanoparticles of zinc-cobalt spinel ferrite Co0.5Zn0.5Fe2O4 (CZFO) were prepared by co-precipitation route, and the effect of the addition of various surfactants (ethanol, PEG, CTAB and acetic acid; surfactant:metals = 0.5:1) on their magnetic and optical properties were investigated. Such surfactant additives have shown great potency in controlling and improving nucleation and growth stages, leading to an optimisation of crystallite size, porosity and specific surface area (SSA). The addition of ethanol in particular helped to optimise the physicochemical properties of the material, giving the lowest crystallite size of 11.7 nm, and highest porosity and SSA values of 0.65 cm(3)/g and 32.37 m(2)/g, respectively. The sample made with ethanol also had a small grain size of 50-100 nm. The CZFO made with ethanol surfactant also had greater coercivity (H-c) and saturation magnetisation (M-s) values compared with the other surfactants, of 22 kA m(-1) and 81.19 A m(2) kg(-1). UV-vis diffuse reflectance spectra (DRS) showed all samples made with surfactant additives had two distinct absorption edges in the visible region, around 550 nm and 700 nm. Two optical band gap (E-g) values were obtained for direct allowed transitions for these CZFO samples, with E-g1 values in the range of 1.99-2.06 eV, equivalent to that expected for ZnFe2O4, and E-g2 in the range of 1.60-1.66 eV, as expected for CoFe2O4. The CZFO made with ethanol also had the highest E-g values in both cases. (C) 2018 Elsevier B.V. All rights reserved.
publisher ELSEVIER SCIENCE SA
issn 0925-8388
year published 2019
volume 774
beginning page 1250
ending page 1259
digital object identifier (doi) 10.1016/j.jallcom.2018.09.393
web of science category Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering
subject category Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
unique article identifier WOS:000449743600142
  ciceco authors
  impact metrics
journal analysis (jcr 2017):
journal impact factor 3.779
5 year journal impact factor 3.315
category normalized journal impact factor percentile 80.254
dimensions (citation analysis):
altmetrics (social interaction):



 


Sponsors

1suponsers_list_ciceco.jpg