Ana Francisca Osório de Almeida Coelho e Silva
  Researcher  
   
  extension: 24966  
  e-mail: francisca.silva@ua.pt  
  department: Chemistry  
  office: 29.3.24  
   
  group: 5 - biomedical and biomimetic materials
 
  line: 3 - sustainability
 
  direct url: http://www.ciceco.ua.pt/franciscasilva  
  research group: PATh  
   
Short resume

Francisca A. e Silva graduated in Biotechnology at University of Aveiro in 2012, with one year abroad at La Sapienza University of Rome. After this period, she moved back to Portugal to start a research grant on the ecotoxicological evaluation of ionic liquids. After being awarded a PhD grant from the Portuguese Foundation for Science and Technology (FCT), she completed her PhD in Chemical Engineering with honors at the University of Aveiro in November 2018 also receiving the “Best PhD thesis in Chemical Engineering” awarded by the Iberoamerican Congress in Chemical Engineering. During the PhD, she spent three months abroad at McGill University, Canada. After, she worked as a research grantee under the framework of the European Research Council project “IgYPurTech” in order to develop cost-efficient purification platforms for antibodies. From February to May 2019, she was a postdoctoral researcher working on the development of integrated production/purification of biopharmaceuticals. Currently, Francisca A. e Silva is a researcher hired under the scope of the scientific project IonCytDevice (POCI-01-0145-FEDER-031106), where she is developing a device based on supported ionic liquids for the removal of cytostatic drugs from aqueous samples.

Since 2013, Francisca A. e Silva published 21 articles in international peer reviewed high impact journals and 1 encyclopedia entry (+800 citations, h-index of 14). Moreover, she has contributed with +50 oral and posters communications in national and international conferences and meetings.

academic degrees

2014-2018 • PhD in Chemical Engineering at University of Aveiro, Portugal • Thesis: Extraction and separation of drugs using alternative solvents • Superisors: Prof. Dr. João A. P. Coutinho and Dr. Sónia P. M. Ventura.

2010-2012 • MSc in Biotechnology at University of Aveiro, Portugal • Thesis: Bioproduction of polyhydroxyalkanoates from olive oil mill effluents • Supervisors: Prof. Dr. Mauro Majone (from La Sapienza University of Rome) and Prof. Dr. Luísa Seuanes Serafim.

2007-2010 • BSc in Biotechnology at University of Aveiro, Portugal.

Investigation interests

Francisca A. e Silva performs research at the intersection of the following scientific domains: Chemical Engineering, Biotechnology, Biology and Green Chemistry. Her research interests entail:

Improving biomarkers detection in human fluids using ionic liquids
Clinical care may significantly benefit from the detection of biomarkers in human samples. However, most biomarkers are proteins, thus labile molecules, and are present in low amounts in biological fluids. These features challenge the reliability of diagnosis results as false postitives/negatives may occur. Additionally, current detection of biomarkers is neither expedite nor cost-effective.  
In order to face these challenges, I have been recently using ionic-liquid-based aqueous biphasic systems to purify and concentrate of biomarkers from human fluids, enabling more expedite detection by the development of cost-effective and user-friendly approaches.

Development of ionic-liquid-based aqueous biphasic systems for the purification of biopharmaceuticals
With both lifespan and life quality of human population advancing, the role of biopharmaceuticals as therapeutic agents has evolved at fast pace. Antibodies are high-value biopharmaceuticals, for which the purification routes available lack cost-efficiency and yield low purity and stability.
In order to overcome such shortcomings, I have been recently working on the use of switchable ionic-liquid-based aqueous biphasic systems for the purification of biopharmaceuticals.

Development of chiral ionic-liquid-based aqueous biphasic systems for enantioseparation of chiral compounds
The production of enantiopure drugs is highly recommended due to the distinct pharmacological activity that enantiomers may display; yet, the limited approaches available and their high cost remain challenging. Liquid-liquid extraction techniques, in particular aqueous biphasic systems, seem to be promising for enantioseparations. However, polymeric aqueous biphasic systems suffer from limited selectivity.
Aiming at accomplishing enhanced enantioselectivity, I have been working on the application of chiral ionic liquids as both solvents and chiral selectors within aqueous biphasic systems.

Valorization of wastes by the recovery of added-value compounds using alternative solvents
Currently, a mindset shift started to occur in industry from a “take-make-use-dispose” to a circular economy, where products and processes are developed in the light of resource efficiency and recycling. Within a circular economy, goods that no longer serve can be transformed into resources/raw materials, so that waste minimization is accomplished.
The problem of dealing with pharmaceuticals at the end of their life cycle remains challenging. During the past years, I have been developing alternative sustainable ways to valorize domestic pharmaceutical wastes by the recovery of active ingredients using cleaner processes based on water and ionic liquids.

Preparation of supported ionic liquids as alternative adsorbents for cytostatic drugs from urine
Cancer prevalence is increasing at fast pace. Alongside, new cancer treatment options are highly demanded, where anti-cancer drugs such as cytostatics play a role; yet, the excretion of cytostatics by urine is responsible for contamination in wastewater treatment plants and subsequently to the aquatic environment.
In order to tackle the environmental issues associated with cytostatic drugs consumption, I have been developing supported ionic liquids and evaluating their adsorption capacity by adsorption kinetics and isotherms determination.

publications

 
Sponsors

1suponsers_list_ciceco.jpg