1. MICROPOROUS MATERIALS
Transition Metal (& Sn) Silicates

1) Anderson, M. W., Terasaki, O., Ohsuna, Philippou, A., MacKay, S. P., Ferreira, A., Rocha, J. and Lidin, S., "Structure of the microporous titanosilicate ETS-10" Nature, 367: 347 (1994).
2) Anderson, M. W., Philippou, A., Ferreira, A., Lin, Z. and Rocha, J., "Al, Ti, avoidance in the microporous titano-aluminosilicate ETAS-10", Angew. Chem., Int. Ed. Engl., 34: 1003 (1995).
3) Anderson, M. W., Agger, J. R., Luigie, D.-P., Baggaley, A. K. and Rocha, J., "Cation sites in ETS-10: 23Na 3Q MAS NMR and lattice energy minimisation calculations", J. Phys. Chem.Chem. Phys., 1: 2287 (1999).
4) Lin, Z., Rocha, J., Ferreira, P., Thursfield, A., Agger, J. R. and Anderson, M. W., "Synthesis and structural characterisation of microporous framework zirconium silicates", J. Phys. Chem. B, 103: 957 (1999).
5) Ferreira, A., Lin, Z., Rocha, J., Morais, C. M., Fernandez, C., “Ab initio structure determination of a small-pore framework sodium stannosilicate”, Inorg Chem., 40, 3330-3335 (2001).
6) Brandão, P., Almeida Paz, F. A. and Rocha, J., “A novel microporous copper silicate: Na2Cu2Si4O11×2H2O”, Chem. Commun., 171-173 (2005).
7) Ananias, D., Almeida Paz, F. A., Carlos, L. D., Rocha, J., “Chiral microporous rare-earth silico-germanates: Synthesis, structure and photoluminescence properties”, Micropor. Mesopor. Mater., 166: 50-58 (2012).
8) Bornes, C., Sardo, M., Lin, Z., Amelse, J., Fernandes, A., Ribeiro, M. F., Geraldes, C., Rocha, J., Mafra, L., “1H-31P HETCOR NMR elucidates the nature of acid sites in zeolite HZSM-5 probed with trimethylphosphine oxide”, Chem Commun., 55: 12635-12638 (2019).
Rare-Earth Silicates 
1) Rocha, J., Ferreira, P. Carlos, L. D. and Ferreira, A., “The first example of a microporous framework cerium-silicate”, Angew. Chem Int Ed., 39: 3276-3279 (2000).
2) Ananias, D., Ferreira, A., Rocha, J., Ferreira, P., Rainho, J. P:, Morais, C. and Carlos, L. D., “Novel microporous framework europium and terbium silicates”, J. Am. Chem. Soc., 123, 5735-5742 (2001).
3) Ferreira, A., Ananias, D., Carlos, D., Morais, C. M. and Rocha, J., “Novel microporous lanthanide silicates with tobermorite-like structure”, J. Am. Chem. Soc., 125: 14573-14579 (2003).
4) Ananias, A., Paz, F. A. A., Carlos, L. D., Geraldes, F. G. C., Rocha, J., “Optical detection of solid-state chiral structures with unpolarized light and in the absence of external fields”, Angew. Chem. Int. Ed., 45: 7938-7942 (2006).
5) Ananias, D., Ferdov, S., Paz, F. A. A., Sá Ferreira, R. A., Ferreira, A., Geraldes, C. F. G. C., Carlos, L. D., Lin, Z., Rocha, J., “Photoluminescent layered lanthanide silicate nanoparticles”, Chem. Mater., 20: 205-212 (2008).
6) Ananias, D., Kostova, M., Paz, F. A. A., Neto, A. N. C., De Mora, R. T., Malta, O. L., Carlos, L. D., Rocha, J., "Molecule-like Eu3+ dimer enbedded in an extended system exhibits unique photoluminescence properties", J. Am. Chem. Soc., 131: 8620-8626 (2009).
7) Ananias, D., Almeida Paz, F. A., Yufit, D. S., Carlos, L. D., Rocha, J., “Photoluminescent thermometer based on a phase-transition lanthanide silicate with unusual structural disorder”, J. Am. Chem. Soc., 137: 3051-3058 (2015).
8) Figueiredo, R., de Melo, M. M. R., Portugal, I., Ananias, D., Rocha, J., Silva, C. M.,“Cs+removal and optical detection by microporous lanthanide silicate Eu-AV-20 in a fixed-bed column”, Chem. Eng. J.,286: 48-58 (2016).
9) Ananias, D., Paz, F. A. A., Carlos, L. D., Rocha, J., “Near-infrared ratiometric luminescent thermometer based on a new lanthanide silicate”, Chem. Eur. J., 24: 11962-11935 (2018).
Phosphates
1) Rocha, J., Esculcas, A. P., Fernandez, C. and Amoureux, J. P., "Two-dimensional triple-quantum 27Al MAS NMR spectroscopic study of the high-temperature phase transformation of microporous VPI-5", J. Phys. Chem., 100: 17889 (1996).
2) Rocha, J., Lourenço, J. P., Ribeiro, M. F., Fernandez, C. and Amoureux, J. P., "Multiple-quantum 27Al MAS NMR spectroscopy of microporous AlPO-40 and SAPO-40", Zeolites, 19: 156 (1997).
3) Shi, Fanian, Almeida Paz, F. A., Ribeiro-Claro, P., Rocha, J., “Transposition of chirality from diphosphonate metal-organic framework precursors onto porous lanthanide pyrophosphates”, Chem. Commun., 49: 11668-11670 (2013).
2. LANTHANIDES OXIDES NANOTUBES AND FLUORIDE NANOPARTICLES

1) Macedo, A. G., Ananias, D., André, P. S., Sá Ferreira, R. A., Kholkin, A. L., Carlos, L. D., Rocha, J., “Functionalization of atomic force microscope tips by dielectrophoretic assembly of Gd2O3:Eu3+ nanorods”, Nanotechnol., 19: 295702 (2008).
2) Macedo, A. G., Ferreira, R. A. S., Ananias, D., Reis, M. S., Amaral, V. S., Carlos L. D., Rocha, J., “Effects of phonon confinement on anomalous thermalization, energy transfer and upconversion in Ln3+-doped Gd2O3 nanotubes”, Adv. Funct. Mater., 20: 624-634 (2010).
3) Debasu, M. L., Ananias, D., Macedo, A. G., Rocha, J., Carlos, L. D., “Emission-decay curves, energy-transfer and effective-eefractive index in Gd2O3:Eu3+ nanorods”, J. Phys. Chem. C, 115: 15297–15303 (2011).
4) Debasu, M. L., Ananias, D., Pastoriza-Santos, I., Liz-Marzan, L. M., Rocha, J., Carlos L. D., “All-In-One OpticalHeater-Thermometer Nanoplatform Operative from Room Temperature to 2000 K”, Adv. Mater., 35: 4868-4874 (2013).
5) Balabhadra, S., Debasu, M. L., Brites, C. D. S., Nunes, L. A. O., Malta, O. L., Rocha, J., Bettinelli, M., Carlos, L. D.,“Boosting the sensitivity of Nd3+-based luminescent nanothermometers”, Nanoscale, 7: 17261-17267 (2015).
6) Balabhadra, S., Rocha, J., Debasu, M., Brites, C., Carlos L., “Implementing luminescence thermometry at 1.3 μm using(GdNd)2O3nanoparticles”, J. Luminescence, 180: 25–30 (2016).
7) Brites, C. D. S., Xie, X., Debasu, M. L., Qin, X., Rocha, J., Liu, X., Carlos, L. D., “Instantaneous Ballistic Velocity of Suspended Brownian Nanocrystals Measured by Upconversion Nanothermometry”, Nature Nanotech., 11, 851–856 (2016).
3. ORGANIC-INORGANIC HYBRID MATERIALS
Metal Organic Frameworks and Related Materials 
1) Mafra, M., Almeida Paz, F. A., Shi, F.N., Rocha, J., Trindade, T., Fernandez, C., Makal, A., Wozniak, K., Klinowski, J., “Hydrothermal synthesis and structural characterization of a Ge-pmida binuclear complex: X-ray diffraction and HETCOR MAS NMR with FS-LG decoupling”, Chem. Eur. J., 12: 363-375 (2006).
2) Mafra, L., Paz, F. A. A., Shi, F-N., Sá Ferreira, R. A., Carlos, L. D., Trindade, T., Fernandez, C., Klinowski, J. and Rocha, J., “Crystal structure, Solid-State NMR spectroscopic and photoluminescence studies of Organic-Inorganic Hybrid Materials (HL)6[Ge6(OH)6(hedp)6]·2(L)·nH2O, L=hqn or phen”, Eur. J. Inorg. Chem., 4741-4751 (2006).
3) Cunha-Silva, L., Mafra, L., Ananias, D., Carlos, L. D., Rocha, J., Paz, F. A. A., “Photoluminescent lanthanide-organic 2D networks: a combined synchrotron powder X-ray diffraction and solid-state NMR study”, Chem. Mater., 19: 3527-3538 (2007).
4) Shi, F. N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Calos, L. D., Almeida Paz, F. A. and Rocha, J., “Interconvertable Modular Framework and Layered Lanthanide(III)-Etidronic Acid Coordination Polymers”, J. Am. Chem. Soc., 130: 150-167 (2008).
5) Harbuzaru, B. V., Corma, A., Rey, F., Atienzar, P., Jordá, J. L., García, H., Ananias, D., Carlos L. D. and Rocha, J., “Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors”, Angew. Chem. Int. Ed., 47: 1080-1083 (2008).
6) Harbuzaru, B. V., Corma A., Rey, F., Jordá, J. L., Ananias D., Carlos, L. D., Rocha, J., "A miniaturized linear pH sensor based on a highly photoluminescent self-assembled Europium(III) metal organic framework", Angew. Chem. Int. Ed., 48: 6476-6479 (2009).
7) Rocha, J., Shi, F. N., Almeida Raz, F. A., Mafra, L., Sardo, M., Cunha-Silva, L., Chisholm, J., Ribeiro-Claro, P. and Trindade, T., “2D-2D-0D stepwise deconstruction of a water Framework templated by a nanoporous organic-inorganic hybrid host”, Chem. Eur. J., 16: 7741-7749 (2010).

8) Rocha, J., Carlos, L. D., Paz, F. A. A., Ananias, D.,“Luminescent multifunctional lanthanides-based metal-organic frameworks”, Chem. Soc. Rev., 40: 926-940 (2011).
9) Silva, P., Vieira, F., Gomes, A. C., Ananias, D., Fernandes, J. A., Bruno, S. M., Soares, R., Valente, A. A., Rocha, J., Paz, F. A. A., “Thermal transformation of a layered multifunctional network into a metal-organic framework based on a polymeric organic linker”, J. Am. Chem. Soc., 133: 15120-15138 (2011).
10) Rocha, J., Carlos, L. D., Paz, F. A. A., Ananias, D.,“Luminescent multifunctional lanthanides-based metal-organic frameworks”, Chem. Soc. Rev., 40: 926-940 (2011).
11) Paz, F. A. A., Klinowski, J., Vilela, S. M. F., Tomé, J. P. C., Cavaleiro, J. A. S., “Ligand design for functional metal–organic frameworks”, Chem. Soc. Rev., 41: 1088-1110 (2012).
12) Liu, S. R., Ferreira, R. A. S., Almeida Paz, F. A., Cadiau, A., Carlos, L. D., Fu, L. S., Rocha, J., Shi, F. –N., “Highly emissive Zn-Ln metal organic frameworks with an unusual 3D inorganic subnetwork”, Chem. Commun., 48: 7964-7966 (2012).
13) Abdelhameed, R. M., Carlos, L. D., Silva, A., Rocha, J., “Near-infrared emitters based on post-synthetic modified Ln3+-IRMOF-3”, Chem. Commun., 49: 5019-5021 (2013).
14) Cadiau, A., Brites, C. D. S., Costa, P. M. F. J., Ferreira, R. A. S., Rocha, J., Carlos, L. D., “Rathiometric nanothermometer based on an emissive Ln3+- organic framework”, ACS Nano, 7: 7213–7218 (2013).
15) Wang, Z., Ananias, D., Carné-Sánchez, A., Brites, C. D. S., Imaz, I., Maspoch, D., Rocha, J., Carlos, L.D., “Lanthanide organic framework nanothermometers prepared by spray drying”, Adv. Funct. Mater., 25: 2824-2830 (2015).
16) Shi, F. N., Almeida, J. C., Helguero, L. A., Fernandes, M. H. V., Knowles, J. C., Rocha, J., “Calcium phosphonate frameworks for treating bone tissue disorders”, Inorg Chem., 54: 9929–9935 (2015).
17) Abdelhameed, R., Kamel, O., Amr, A., Rocha, J., Silva, A., “Anti-mosquito activity of a titanium-based metal–organic framework supported on fabrics”, ACS Appl. Mater. Interfaces, 9: 22112–22120 (2017).
18) Ananias, D., Firmino, A. D. G., Mendes, R. F., Almeida Paz, F. A., Nolasco, M., Carlos, L. D., Rocha, J., “Excimer formation in a Tb-MOF assists luminescence thermometry”, Chem. Mater., 29: 9547-9554 (2017).
19) Wang, X.-F., Chen, Y., Song, L.-P., Fang, Z., Zhang, J., Shi, F., Lin, Y.-W., Sun, Y., Zhang, Y.-B., Rocha, J., “Cooperative capture of uranyl ion by a carbonyl-bearing hierarchical porous Cu-Organic Framework”, Angew. Chem., Intl. Ed., 58: 1-6 (2019).
20) Castells-Gil, J., Mañas-Valero, S., Vitórica-Yrezábal, I. J., Ananias, D., Rocha, J., Santiago, R., Bromley, S. T., Baldoví, J. J., Coronado, E., Souto, M., Espallargas, G. M., “Electronic, Structural and Functional Versatility in Tetrathiafulvalene-Lanthanide Metal–Organic Frameworks”, Chemistry, Eur. J., 25: 12636-12643 (2019).
Amorphous Hybrids 
1) Fu, L., Sá Ferreira, R. A., Silva N. J. O., Carlos, L. D., Zea Bermudez, V. and Rocha, J., “Photoluminescence and quantum yields of urea and urethane cross-linked nanohybrids derived from carboxylic acid solvolysis”, Chem. Mater., 16: 1507-1516 (2004).
2) Nunes, S. C., de Zea Bermudez, V., Cybinska, J., Ferreira E. A. S., Legendziewics, J., Carlos, L. D., Silva, M. M., Smith, M. J., Ostrovskii, D and Rocha, J., “Structure and photoluminescent features of di-amide cross-linked alkylene siloxane hybrids”, J. Mater. Chem., 15: 3876-3886 (2005).
3) Nunes, S. C., de Ze Bermudez, V., Silva, M. M., Smith, M. J., Ostrovskii, D., Sá Ferreira, R. A., Carlos, L. D., Rocha, J., Gonçalves, A., Fortunato, E., “Sol-gel derived potassium-based di-ureasils for smart windows", J. Mater. Chem., 17: 4239 (2007).
4) Carlos, L. D., de Zea Bermudez, Amaral, V. S., Nunes, S. C., Silva, N. J. O., Ferreira, R. A. S., .; Rocha, J, Santilli, C. V. and Ostrovskii, D., "Nanoscopic photoluminescence memory as a fingerprint of complexity in hierarchically-structured self-assembled alkylene/siloxane hybrids", Adv. Mater., 19: 341-348 (2007).
Templated and Intercalated Materials
1) Rocha, J., Duer, M. J. and Klinowski, J., "Solid-state NMR studies of the molecular motion in the kaolinite:DMSO intercalate", J. Am. Chem. Soc., 114: 6867 (1992).
2) Mafra, L., Paz, F. A. A., Rocha, J., Espina, A., Khainakov, S. A. and Garcia, J. R., “Structural characterisation of layered gamma-titanium phosphate (C6H13NH3)[Ti(HPO4)(PO4)]·H2O”, Chem. Mater., 17: 6287-6294 (2005).
3) Mafra, L., Rocha, J., Fernandez, C. and Paz, F. A. A., “Characterisation of microporous aluminophosphate IST-1 using 1H Lee-Goldburg techniques”, J. Magn. Reson., 180: 235-243 (2006).
4) Karmaoui, M., Mafra, L., Sá Ferreira, R. A., Rocha, J., Carlos, L. D. and Pinna, N., "Photoluminescent Rare-Earth Based Biphenolate Lamellar Nanostructures", J. Phys. Chem. C, 111: 2539-2544 (2007).
5) Pinto, M. L., Mafra, L., Guil, J. M., Pires, J., Rocha, J., “Adsorption and activation of CO2 by amine-modified nanoporous materials studied by solid-state NMR and (CO2)-C-13 adsorption”, Chem. Mater., 23: 1387-1395 (2011).
Functionalized MCMs and Periodic Mesoporous Organo-Silicas 
1) Nunes, C. D., Valente, A., Pillinger, M., Fernandes, A. C., Romão, C. C., Rocha, J., Gonçalves, I. S., “MCM-41 functionalised with bipyridyl groups and its use as a support for oxomolybdenum(VI) catalysts”, J. Mater. Chem., 12, 1735-1742 (2002).
2) Nunes, C. D., Valente, A. A., Pillinger, M., Rocha, J. and Gonçalves, I. I., “Molecular structure-activity relationship for the oxidation of organic compounds using mesoporous silica catalysts derivatised with bis(halogeno)dioxomolibdenum(VI) complexes”, Chem. Eur. J., 9: 4380-4390 (2003).
3) Bion, N., Ferreira, P., Valente, A., Gonçalves, I. S. and Rocha, J., “Ordered benzene-silica hybrids with molecular-scale periodicity in the walls and different mesopore sizes”, J. Mater. Chem., 13:1910-1913 (2003).
4) Abrantes, M., Gago, S:, Valente, A. A., Pillinger, M., Gonçalves, I. S:, Santos, T. M., Rocha, J. and Romão C. C., “Incorporation of a (cyclopentadienyl)molybdenum oxo complex in MCM-41 and its use as a catalysts for olefin epoxidation”, Eur. J. Inorg. Chem., 4914 (2004).
5) Fu, L., Sá Ferreira, R. A., Valente, A., Rocha, J and Carlos, L. D., “Optically functional nanocomposites with poly(oxyethylene)-based di-ureasils and mesoporous MCM-41”, Micropor. Mesopor. Mater., 94: 185-192 (2006).
6) Coelho, A. C., Balula, S. S., Bruno, S.M., Alonso, J. C., Bion, N., Ferreira, P., Pillinger, M., Valente, A. A., Rocha, J. and Gonçalves, I. S., “Grafting of Molecularly Ordered Mesoporous Phenylene-Silica with Molybdenum Carbonyl Complexes: Efficient Heterogeneous Catalysts for the Epoxidation of Olefins”, Adv. Synth. Catal., 352: 1759-1769 (2010).
4. MATERIALS FOR DRUG DELIVERY AND IMAGING 
1) Lin, Z., Ferreira, A., Soares, M. R., Rocha, J., “Ab initio structure determination of novel small-pore metal-silicates: knots-and-crosses structures”, Inorg. Chim Acta, 356: 19-26 (2003).
2) del Arco, M., Cebadera, E., Gutiérrez, S., Martín, C., Montero, M. J., Rives, V., Rocha, J. and Sevilla, M. A., “Mg,Al layered double hydroxides with intercalated indomethacin: synthesis, characterisation and pharmacological study”, J. Pharmacol. Sci., 93: 1649-1658 (2004)
3) del Arco, M., Gutiérrez, S., Martín, C., Rives, V. and Rocha, J., “Synthesis and characterisation of layered double hydroxides (LDH) intercalated with non-steroidal anti-inflamatory (NSAID) drugs”, J. Solid State Chem., 177: 3954-3962 (2004).
4) Braga, S. S., Sá Ferreira, R. A., Gonçalves, I. S., Pillinger, M., Rocha, J., Teixeira-Dias, J. J. C. and Carlos, L. D., “Synthesis, characterisation and luminescence of gamma-cyclodextrin inclusion compounds containing europium(III) and gadolinium(III) tris(beta-diketonates)”, J. Phys. Chem., 106: 11430-11437 (2002).
5) Pereira, G. A., Ananias, D., Rocha, J., Muller, R. N., Vander Elst, L., Peters, J. A. and Geraldes, C. F. G. C., “NMR relaxivity of Ln3+-based zeolite-type materials”, J. Mater. Chem, 15: 3832-3837 (2005).
6) Pereira, G. A., Norek, M., Peters, J. A., Ananias, D., Rocha, J., and Geraldes, C. F. G. C., “NMR transversal relaxivity of aqueous suspensions of particles of Ln3+-based zeolite type materials”, Dalton Trans., 2241-2247 (2008).
7) Pereira, G. A., Joop, P., Paz, F. A. A., Rocha, J., Geraldes, C., “Evaluation of [Ln(H2cmp)(H2O)] metal organic framework materials for potential application as MRI contrast agents", Inorg. Chem., 49: 2969-2974 (2010).
8) Pinho, S. L. C., Pereira, G. A., Voisin, P., Kassem, J., Bouchaud, V., Etienne, L., Peters, J. A., Carlos, L., Mornet, S., Geraldes, C. F. G. C., Rocha, J., DElville, M.-H., “Fine tuning of the relaxometry of gamma-Fe2O3@SiO2 nanoparticles by tweaking the silica coating thickness”, ACS Nano, 4: 5339-5349 (2010).
9) Pinto, M. L., Rocha, J., Gomes, J. R. B., Pires, J., “Slow release of NO by microporous titanosilicate ETS-4”, J. Am. Chem. Soc., 133: 6396–6402 (2011).
10) Pinho, S. L. C., Faneca, H., Geraldes, C. F. G. C., Delville, M.-H., Carlos, L. D., Rocha, J., “Lanthanide-DTPA grafted silica nanoparticles as bimodal-imaging contrast agents”, Biomater., 33: 925-935 (2012).
11) Pinto, M. L., Rocha, J., Gomes, J. R. B., Pires, J., “Slow release of NO by microporous titanosilicate ETS-4”, J. Am. Chem. Soc., 133: 6396–6402 (2011).
12) Vilaça, N., Morais-Santos, F., Machado, A. F., Sirkecioglu, A., Pereira, M. F. R., Sardo, M., Rocha, J., Parpot, Pier, Fonseca, A. M., Baltazar, F., Neves, I. C., “Micro and mesoporous structures as drug delivery carriers for salicylic acid”, J. Phys. Chem C, 119: 3589-3595 (2015).
13) Vilaça, N., Machado, A. F., Morais-Santos, F., Amorim, R., Neto, A. P., Logodin, E., Pereira, M. F. R., Sardo, M., Rocha, J., Parpot, P., Fonseca, A. M., Baltazar, F., Neves, I. C., “Comparison of different silica microporous structures as drug delivery systems for in vitro models of solid tumors”, RSC Adv., 7: 13104-13111 (2017).
14) Pinto, R. V., Fernandes, A. C., Antunes, F., Lin, Z., Rocha, J., Pinto, M. L., “New generation of nitric oxide-releasing porous materials: Assessment of their potential to regulate biological functions”, Nitric Oxide, 90: 29-36 (2019).
15) André, V., Silva, A. R. F., Fernandes, A., Frade, R., Garcia, C., Rijo, Antunes, A., P., Rocha, J., Duarte, T., “Mg- and Mn-MOFs boost the antibiotic activity of nalidixic acid”, ACS Appl. Bio Mater., 2: 262347-2354 (2019).

5. AGGREGATION-INDUCED EMMISSION (ORGANIC MATERIALS)
1) Guieu, S., Cardona, F., Rocha, J., Silva, A. M. S., “Luminescent bi-metallic fluoroborates derivatives of bulky salen ligands”, New J. Chem., 38: 5411-5414 (2014).
2) Guieu, S., Joana, P., Silva, V. L. M., Rocha, J., Silva, M. S., “Synthesis, post-modification and fluorescence properties of boron diketonate complexes”, Eur. J. Org. Chem., 3423-3426 (2015).
3) Vaz, P. A. A. M., Rocha, J., Silva, A. M. S., Guieu, S., “Aggregation-induced emission enhancement in halochalcones”, New J. Chem., 40: 8198 (2016).
4) Vaz, P., Guieu, S., Silva, A. M. S., Rocha, J., “Aggregation-induced emission enhancement of chiral boranils”, New J. Chem., 42: 18166-18171 (2018).
5) Guieu, S., Cardona, F., Rocha, J., Silva, A. M. S., "Tunable color of aggregation induced emission enhancement in a family of hydrogen-bonded azines and Schiff bases", Chem. Eur. J., 24: 17262 – 17267 (2018).
6. OTHER SELECTED MATERIALS
1) Rocha, J., Orion, I., Nahring, J., Heaton, B. T., Fernandez, C. and Amoureux, J. P., "Solid-state NMR studies of interstitial P atoms within rhodium carbonyl clusters", Solid State NMR, 8: 195 (1997).
2) Walfort, B., Lameyer, L., Weiss, W., Herbst-Irmer, R., Bertermann, R., Rocha, J., and Stalke, D., “{[(MeLi)4.(DEM)1.5]¥ and [(thf)3.Li3Me(NtBu)3S]}- How to reduce aggregation of parent methyllithium”, Chem. Eur. J., 7: 1417 (2001).

3) Abrantes, M., Valente, A. A., Pillinger, M., Gonçalves, I. S., Rocha, J. and Romão, C. C., “Preparation and characterization of organotin-oxomolybdate coordination polymers and their use in sulfoxidation catalysis", Chem.Eur. J., 9: 2685-2695 (2003).
4) Ananias, D. Ferreira, A., Carlos, L. D. and Rocha, J., “Multifunctional sodium lanthanide silicates: from blue emitters and infrared S-band amplifiers to X-ray phosphors ”, Adv. Mater., 15: 980-85 (2003).
5) Smirnova, O. A., Rocha, J., Nalbandyan, V. B., Kharton, V. V. and Marques, F. M. B., “Crystal structure, local sodium environments and ion dynamics in Na0.9Ni0.6Sb0.4O2, a new mixed antimonate”, Solid State Ion., 178: 1360-1365 (2007).
7. SOLID-STATE NMR: AN OLD PASSION 
1) Rocha, J., Kolodziejski, W. and Klinowski, J., "Two-dimensional J-resolved 13C NMR of a solid with restricted molecular motion", Chem. Phys. Lett., 176: 395 (1991).
2) Rocha, J., Klinowski, J., Barrie, P. J., Jelinek, R. and Pines, A., "Solid‑state 27Al NMR studies of aluminophosphate molecular sieves: enhanced resolution by quadrupole nutation and double-rotation", Solid State NMR, 1: 217 (1992).
3) Jäger, C., Rocha, J. and Klinowski, J., "High-speed satellite transition 27Al MAS NMR spectroscopy", Chem. Phys. Lett., 188, 208 (1992).
4) Duer, M. J. and Rocha, J., "A two-dimensional solid-state 2H exchange NMR study of the molecular motion in the kaolinite:DMSO intercalation compound", J. Magn. Reson., 98: 524 (1992).
5) 2) Rocha, J., Lin, Z., Fernandez, C. and Amoureux, J. P., "Multiple-quantum 27Al MAS NMR spectroscopy of microporous aluminium methylphosphonate AlMepO-alfa", Chem. Commun., 2513 (1996).
6) Orion, I., Rocha, J., Jobic, S., Abadie, V., Brec, R., Fernandez, C. and Amoureux, J. P., "125Te solid-state NMR studies of transition metal ditellurides", J. Chem. Soc. Dalton Trans., 20: 3741 (1997).
7) Fernandez, C., Morais, C., Rocha, J. and Pruski, M., “High-resolution heteronuclear correlation spectra between 31P and 27Al nuclei in microporous aluminophosphates”, Solid State NMR, 21, 61-79 (2002).
8) Delevoye, L., Fernandez, C., Morais, C. M., Amoureux, J. P., Montouillout, V. and Rocha, J., “Double-resonance decoupling for resolution enhancement of 31P solid-state MAS and 27Al-31P MQ-HETCOR NMR ”, Solid State NMR, 22: 501-512 (2002).
9) Amoureux, J. P., Morais, C, M., Trebosc, J., Rocha, J. and Fernandez, C., “I-STMAS, a new high-resolution solid-state NMR method for half-integer quadrupolar nuclei”, Solid State NMR, 23: 213-223 (2003).
10) Morais, C. M., Lopes M., Fernandez, C, and Rocha, J., “Assessing the potential of fast amplitude modulation pulses for improving triple-quantum MAS NMR spectra of half-integer quadrupolar nuclei”, Magn. Reson. Chem., 41: 679-688 (2003).
11) Malicki, L., Mafra, L., Quoineaud, A.-A., Thibault-Starzyk, F., Rocha, J. and Fernandez, C., “Multiplex MQMAS NMR of quadrupolar nuclei”, Solid State NMR, 28: 13-21 (2005).
12) Mafra, L., Rocha, J., Fernandez, C. and Paz, F. A. A., “Characterisation of microporous aluminophosphate IST-1 using 1H Lee-Goldburg techniques”, J. Magn. Reson., 180: 235-243 (2006).
13) Coelho C., Rocha, J, Madhu, P. K. and Mafra L., “Practical aspects of Lee-Goldburg based CRAMPS techniques for high-resolution 1H NMR spectroscopy in solids: implementation and applications”, J. Mag Reson., 194: 264-282 (2008).
14) Morais C. M., Montouillout, V., Deschamps M., Iuga, D., Fayon, F., Paz, F. A. A., Rocha, J., Fernandez, C., and Massiot, D., “1D to 3D NMR study of microporous alumino-phosphate AlPO4-40”, Magn. Reson. Chem., 47: 942-947 (2009).

15) Siegel, R., Rocha, J., Mafra, L., "Combining STMAS and CRAMPS NMR spectroscopy: high resolution HETCOR NMR spectra of quadrupolar and H-1 nuclei in solids", Chem. Phys. Lett., 470: 337-341 (2009).
16) Mafra, L., Coelho, C., Siegel, R., Rocha, J, “Assessing the performance of windowed 1H CRAMPS methods, on biological solids, at high-field and MAS up to 35 kHz ” J. Mag. Reson., 197: 20-27 (2009).
17) Mafra, L., Siegel, R., Fernandez, C., Schneider, D., Aussenac, F., Rocha, J., “High-resolution 1H homonuclear dipolar recoupling NMR spectra of biological solids at MAS rates up to 67 kHz”, J. Mag. Reson., 199: 111-114 (2009).
18) Sardo, M., Siegel, R., Santos, S. M., Rocha, J., Gomes, J. R. B., Mafra, L., “Combining multinuclear high-resolution solid-state MAS NMR and computational methods for resonance assignment of glutathione tripeptide”, J. Phys. Chem. A, 116: 6711-6719 (2012).

19) Santos, S. M., Rocha, J., Mafra, L., “NMR Crystallography: chemical shift-driven crystal structure determination of β-lactam antibiotic amoxicillin trihydrate”, Cryst. Grow Design, 13: 2390-95 (2013).
20) Rocha, J., Almeida Paz, F. A., Sardo M., Mafra, L., “Revisiting the crystal structure of dickite: X-ray diffraction, solid-state NMR and DFT calculations study”, Am. Mineral.,103: 812-818 (2018).
21) Bornes, C., Sardo, M., Lin, Z., Amelse, J., Fernandes, A., Ribeiro, M. F., Geraldes, C., Rocha, J., Mafra, L., “1H-31P HETCOR NMR elucidates the nature of acid sites in zeolite HZSM-5 probed with trimethylphosphine oxide”, Chem Commun., 55: 12635-12638 (2019).
