Molecular dynamics simulation of diffusion coefficients and structural properties of ketones in supercritical CO2 at infinite dilution

abstract

Molecular dynamics (MD) simulations were employed to compute tracer diffusion coefficients (D-12) of propanone, butanone, 2-pentanone and 3-pentanone in supercritical CO2, which are in quite good agreement with experimental data available in the literature. It was confirmed that D-12 is enhanced by pressure decrease, temperature increase, and solute size reduction. The radial distribution functions, spatial distribution functions, and coordination numbers derived from the simulations were further employed to understand how molecular structure specificities affect D-12. The simulations proved that the molecular structuring of the solvent around the solute is similar for all ketones, which implies their diffusivities are essentially affected by their size and volume and, to a less extent, by the position of the carbonyl group in the carbon chain. The good agreement between calculated and measured data validates the MD simulations as a cheap and fast alternative to predict D-12 values of ketones in supercritical CO2. (C) 2015 Elsevier B.V. All rights reserved.

keywords

ATOM FORCE-FIELD; CARBON-DIOXIDE; MONTE-CARLO; PRESSURE RANGE; LENNARD-JONES; WIDE RANGES; HARD-SPHERE; FLUIDS; LIQUID; MODEL

subject category

Chemistry; Engineering

authors

Vaz, RV; Gomes, JRB; Silva, CM

our authors

acknowledgements

R.V. Vaz thanks PhD grant SFRH/BD/69257/2010 provided by Fundacao para a Ciencia e a Tecnologia, Portugal. This work was developed in the scope of the project CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".