abstract
Bone injuries represent a major social and financial impairment, commonly requiring surgical intervention due to a limited healing capacity of the tissue, particularly regarding critical-sized defects and non-union fractures. Regenerative medicine with the application of bone implants has been developing in the past decades towards the manufacturing of appropriate devices. This work intended to evaluate medical 316L stainless steel (SS)-based devices covered by a polymer poly (L-lactic acid) (PLLA) coating for bone lesion mechanical and functional support. SS316L devices were subjected to a previously described silanization process, following a three-layer PLLA film coating. Devices were further characterized and evaluated towards their cytocompatibility and osteogenic potential using human dental pulp stem cells, and biocompatibility via subcutaneous implantation in a rat animal model. Results demonstrated PLLA-SS316L devices to present superior in vitro and in vivo outcomes and suggested the PLLA coating to provide osteo-inductive properties to the device. Overall, this work represents a preliminary study on PLLA-SS316L devices' potential towards bone tissue regenerative techniques, showing promising outcomes for bone lesion support.
keywords
REGENERATION; CELLS; SCAFFOLDS; POLYMERS; PLLA; CRYSTALLINITY; BIOMATERIALS; BONELIKE(R); IMPLANTS; ASSAY
subject category
Biochemistry & Molecular Biology; Chemistry, Multidisciplinary
authors
Branquinho, MV; Ferreira, SO; Alvites, RD; Magueta, AF; Ivanov, M; Sousa, AC; Amorim, I; Faria, F; Fernandes, MHV; Vilarinho, PM; Mauricio, AC
our authors
Groups
G2 - Photonic, Electronic and Magnetic Materials
G5 - Biomimetic, Biological and Living Materials
Projects
CICECO - Aveiro Institute of Materials (UID/CTM/50011/2019)
BioMEMs Avançados para Engenharia de Tecidos: Aplicações em Tecidos Duros (BioMEMs)
acknowledgements
This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, FCT Ref. UID/CTM/50011/2019, financed by national funds through the FCT/MCTES and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. This work was also financed by Portugal 2020 through the European Regional Development Fund (ERDF), in the frame of Operational Competitiveness and Internationalization Programme (POCI), in the scope of the project Advanced BioMEMs for tissue engineering: Applications in hard tissue (BioMEMs), POCI-01-0145-FEDER-032095. Mariana Vieira Branquinho (SFRH/BD/146172/2019), Ana Catarina Sousa (SFRH/BD/146689/2019), and Rui Damasio Alvites (SFRH/BD/116118/2016), acknowledge FCT, for financial support.