Formation and densification behavior of MgAl2O4 spinel: The influence of processing parameters

abstract

Different types of dense stoichiometric and nonstoichiometric magnesium aluminate (MgAl2O4) spinel (MAS) ceramics were prepared following a conventional double-stage firing process using different commercially available alumina and magnesia raw materials. Stoichiometric, magnesia-rich, and alumina-rich spinels were sintered at 1500 degrees-1800 degrees C for 1-2.5 h. The influence of the different processing parameters (average particle size, degree of spinel phase, green density, mass of the powder compact, sintering temperature, holding time at the peak temperature, and starting composition) on the densification behavior of MAS was assessed by measuring the bulk density, apparent porosity, and water absorption capacity, and microstructural observations. Most of the MAS compositions tested exhibited excellent sintering properties.

keywords

MAGNESIUM ALUMINATE SPINEL; NANOCRYSTALLINE MGAL2O4; POWDERS

subject category

Materials Science

authors

Ganesh, I; Olhero, SM; Rebelo, AH; Ferreira, JMF

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".