Photoluminescence, cytotoxicity and in vitro imaging of hexagonal terbium phosphate nanoparticles doped with europium


Luminescent TbPO4 nanoparticles were synthesized via a citric-acid-mediated hydrothermal route. Eu3+ doping of TbPO4 enables an efficient Tb3+-to-Eu3+ energy transfer, leading to a four-fold increase of the absolute emission quantum yield (QY), compared to that of undoped TbPO4. To check the potential of biological use, we conducted in vitro biological experiments on human cervical carcinoma HeLa cells incubated with TbPO4:Eu nanoparticles. TbPO4:Eu nanoparticles can be successfully internalized into the cells, and they show bright intracellular luminescence and very low cytotoxicity. Photoluminescence intensity dependence upon time demonstrates that Eu3+-doped TbPO4 nanoparticles are highly resistant to photobleaching. Our present work represents a demonstration of the use of rare-earth-based nanocrystals as a biological labeling agent because they combine several advantages including high emission quantum yield, long luminescence lifetime, low cytotoxicity and high photostability.



subject category

Chemistry; Science & Technology - Other Topics; Materials Science; Physics


Di, WH; Li, J; Shirahata, N; Sakka, Y; Willinger, MG; Pinna, N

our authors



This study was partly supported by the Grant-in Aid for Scientific Research of the JSPS and the World Premier International Research (WPI) Center Initiative on Materials Nanoarchitronics (MANA), MEXT, Japan, the WCU (WorldClass University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-10013) and FCT project (PTDC/CTM/73243/2006). NS wishes to thank the JST PRESTO program for financial support.

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".