A Computational Study of the Properties and Surface Interactions of Hydroxyapatite


Hydroxyapatite (HAP, Ca-10(PO4)(6)(OH)(2)) was studied from first principles approaches using the local density approximation (LDA) method in combination with various quantum-chemical (QM) and molecular mechanical (MM) methods from HypemChem 7.5/8.0. The data then were used for studies of HAP structures, and the interactions of HAP clusters with ionic species such as citrates. Computed data show that HAP can co-exist in different phases at room temperature, as both hexagonal and monoclinic. Special interest is connected with the ordered monoclinic structure, which could reveal piezoelectric properties. Obtained data on HAP interactions with citrates show the formation of differing HAP nanostructure forms, depending upon the concentration of citrate present.


Materials Science; Physics


Bystrov, VS; Paramonova, EV; Costa, MEV; Santos, C; Almeida, M; Kopyl, S; Dekhtyar, Y; Bystrova, AV; Maevsky, EI; Pullar, RC; Kholkin, AL

nossos autores


VB is thankful to FCT (Portugal) for the partial financial support through his grant SFRH/BPD/22230/2005. SK is thankful to FCT (Portugal) for grant PTDC/EME-MFE/105031/2008, and RCP would like to thank the Ciencia 2008 Program of the Portuguese Science and Technology Foundation (FCT). We also acknowledge FCT projects PTDC/CTM/73030/2006, REDE/1509/RME/2005 and Podi-Trodi EU-Brazil project for partial support.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".