Bioactive Hydrogel Marbles

resumo

Liquid marbles represented a significant advance in the manipulation of fluids as they used particle films to confine liquid drops, creating a robust and durable soft solid. We exploit this technology to engineering a bioactive hydrogel marble (BHM). Specifically, pristine bioactive glass nanoparticles were chemically tuned to produce biocompatible hydrophobic bioactive glass nanoparticles (H-BGNPs) that shielded a gelatin-based bead. The designed BHM shell promoted the growth of a bone-like apatite layer upon immersion in a physiological environment. The fabrication process allowed the efficient incorporation of drugs and cells into the engineered structure. The BHM provided a simultaneously controlled release of distinct encapsulated therapeutic model molecules. Moreover, the BHM sustained cell encapsulation in a 3D environment as demonstrated by an excellent in vitro stability and cytocompatibility. The engineered structures also showed potential to regulate a pre-osteoblastic cell line into osteogenic commitment. Overall, these hierarchical nanostructured and functional marbles revealed a high potential for future applications in bone tissue engineering.

palavras-chave

LIQUID MARBLES; MC3T3-E1 CELLS; SURFACE; DIFFERENTIATION; GLASS; FABRICATION; GENERATION; MONOLAYER; MECHANISM

categoria

Science & Technology - Other Topics

autores

Leite, AJ; Oliveira, NM; Song, WL; Mano, JF

nossos autores

agradecimentos

A.J.L. and N.M.O. acknowledge the financial support from Portuguese Foundation for Science and Technology - FCT (Grant Nos SFRH/BD/73174/2010 and SFRH/BD/73172/2010, respectively), from the program POPH/FSE from QREN. The authors would like to acknowledge the support of the European Research Council grant agreement ERC-2014-ADG-669858 for project ATLAS.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".