resumo
The development of efficient and environmentally-friendly nanomaterials to remove contaminants and pollutants (including harmful organic dyes) ravaging water sources is of major importance. Herein, zwitterionic nanocomposite membranes consisting of cross-linked poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and bacterial nanocellulose (BNC) were prepared and tested as tools for water remediation. These nanocomposite membranes fabricated via the one-pot polymerization of the zwitterionic monomer, 2-methacryloyloxyethyl phosphorylcholine, within the BNC three-dimensional porous network, exhibit thermal stability up to 250 degrees C, good mechanical performance (Young's modulus 430 MPa) and high water-uptake capacity (627%-912%) in different pH media. Moreover, these zwitterionic membranes reduced the bacterial concentration of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) pathogenic bacteria with maxima of 4.3- and 1.8-log CFU reduction, respectively, which might be a major advantage in reducing or avoiding bacterial growth in contaminated water. The removal of two water-soluble model dyes, namely methylene blue (MB, cationic) and methyl orange (MO, anionic), from water was also assessed and the results demonstrated that both dyes were successfully removed under the studied conditions, reaching a maximum of ionic dye adsorption of ca. 4.4-4.5 mg g(-1). This combination of properties provides these PMPC/BNC nanocomposites with potential for application as antibacterial bio-based adsorbent membranes for water remediation of anionic and cationic dyes.
palavras-chave
BACTERIAL CELLULOSE NANOCOMPOSITES; IN-SITU; NANOMATERIALS; AEROGELS; PURIFICATION; COMPOSITES; ADSORPTION
categoria
Materials Science
autores
Vilela, C; Moreirinha, C; Almeida, A; Silvestre, AJD; Freire, CSR
nossos autores
agradecimentos
This work was developed within the scope of the projects CICECO - Aveiro Institute of Materials (UID/CTM/50011/2019) and CESAM (UID/AMB/50017/2019), financed by national funds through the FCT/MEC. The research contract of C. Vilela is funded by national funds (OE), through FCT - Fundacao para a Ciencia e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. FCT is also acknowledge for the research contract under Stimulus of Scientific Employment 2017 to C.S.R. Freire (CEECIND/00464/2017).