authors |
Sintra, TE; Vilas, M; Martins, M; Ventura, SPM; Ferreira, AIMCL; Santos, LMNBF; Goncalves, FJM; Tojo, E; Coutinho, JAP |
nationality |
International |
journal |
CHEMPHYSCHEM |
author keywords |
surface-active ionic liquids; aggregation behavior; thermal properties; cell disruption; ecotoxicity |
keywords |
MICELLE FORMATION; AGGREGATION BEHAVIOR; AQUEOUS-SOLUTIONS; LONG-CHAIN; INTERFACIAL BEHAVIOR; GEMINI SURFACTANTS; SELF-AGGREGATION; ACUTE TOXICITY; MICELLIZATION; BROMIDE |
abstract |
Twelve surface-active ionic liquids (SAILs) and surface-active derivatives, based on imidazolium, ammonium, and phosphonium cations and containing one, or more, long alkyl chains in the cation and/or the anion, were synthetized and characterized. The aggregation behavior of these SAILs in water, as well as their adsorption at solution/air interface, were studied by assessing surface tension and conductivity. The CMC values obtained (0.03-6.0 mM) show a high propensity of these compounds to self-aggregate in aqueous media. Their thermal properties were also characterized, namely the melting point and decomposition temperature by using DSC and TGA, respectively. Furthermore, the toxicity of these SAILs was evaluated using the marine bacteria Aliivibrio fischeri (Gram-negative). According to the EC50 values obtained (0.3-2.7 mg L-1), the surface-active compounds tested should be considered toxic or highly toxic. Their ability to induce cell disruption of Escherichia coli cells (also Gram-negative), releasing the intracellular green fluorescent protein (GFP) produced, was investigated. The results clearly evidence the capability of these SAILs to act as cell disruption agents. |
publisher |
WILEY-V C H VERLAG GMBH |
issn |
1439-4235 |
isbn |
1439-7641 |
year published |
2019 |
volume |
20 |
issue |
5 |
beginning page |
727 |
ending page |
735 |
digital object identifier (doi) |
10.1002/cphc.201801127 |
web of science category |
Chemistry, Physical; Physics, Atomic, Molecular & Chemical |
subject category |
Chemistry; Physics |
unique article identifier |
WOS:000460333900011
|
ciceco authors
impact metrics
journal analysis (jcr 2019):
|
journal impact factor |
3.144 |
5 year journal impact factor |
2.86 |
category normalized journal impact factor percentile |
64.678 |
dimensions (citation analysis):
|
|
altmetrics (social interaction):
|
|
|