Magnetic Properties of La(0.9)A(0.1)MnO(3) (A: Li, Na, K) Nanopowders and Nanoceramics
authors Gluchowski, P; Nikonkov, R; Tomala, R; Strek, W; Shulha, T; Serdechnova, M; Zheludkevich, M; Pakalaniskis, A; Skaudzius, R; Kareiva, A; Abramov, A; Kholkin, A; Bushinsky, MV; Karpinsky, D
nationality International
journal MATERIALS
author keywords multiferroic; manganites; alkali ions; ceramics; magnetization
keywords MAGNETORESISTANCE; TRANSITION; PRESSURE
abstract Nanocrystalline La(0.9)A(0.1)MnO(3) (where A is Li, Na, K) powders were synthesized by a combustion method. The powders used to prepare nanoceramics were fabricated via a high-temperature sintering method. The structure and morphology of all compounds were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). It was found that the size of the crystallites depended on the type of alkali ions used. The high-pressure sintering method kept the nanosized character of the grains in the ceramics, which had a significant impact on their physical properties. Magnetization studies were performed for both powder and ceramic samples in order to check the impact of the alkali ion dopants as well as the sintering pressure on the magnetization of the compounds. It was found that, by using different dopants, it was possible to strongly change the magnetic characteristics of the manganites.
publisher MDPI
isbn 1996-1944
year published 2020
volume 13
issue 7
digital object identifier (doi) 10.3390/ma13071788
web of science category Materials Science, Multidisciplinary
subject category Materials Science
unique article identifier WOS:000529875600306
  ciceco authors
  impact metrics
journal analysis (jcr 2019):
journal impact factor 3.057
5 year journal impact factor 3.424
category normalized journal impact factor percentile 58.121
dimensions (citation analysis):
altmetrics (social interaction):



 


Apoio

1suponsers_list_ciceco.jpg