Influence of Micro-Textures on Cutting Insert Heat Dissipation

resumo

Metal machining is one of the most important manufacturing processes in today's production sector. The tools used in machining have been developed over the years to improve their performance, by reducing the cutting forces, the friction coefficient, and the heat generated during the cutting process. Several cooling systems have emerged as an effective way to remove the excessive heat generated from the chip-tool contact region. In recent years, the introduction of nano and micro-textures on the surface of tools has allowed to further improve their overall performance. However, there is not sufficient scientific data to clearly show how surface texturing can contribute to the reduction of tool temperature and identify its mechanisms. Therefore, this work proposes an experimental setup to study the tool surface characteristics' impact on the heat transfer rate from the tools' surface to the cooling fluid. Firstly, a numerical model is developed to mimic the heat energy flow from the tool. Next, the design variables were adjusted to get a linear system response and to achieve a fast steady-state thermal condition. Finally, the experimental device was implemented based on the optimized numerical model. A good agreement was obtained between the experimental tests and numerical simulations, validating the concept and the implementation of the experimental setup. A square grid pattern of 100 mu m x 100 mu m with grooves depths of 50, 100, and 150 mu m was introduced on cutting insert surfaces by laser ablation. The experimental results show that there is a linear increase in heat transfer rate with the depth of the grooves relatively to a standard surface, with an increase of 3.77% for the depth of 150 mu m. This is associated with the increase of the contact area with the coolant, the generation of greater fluid turbulence near the surface, and the enhancement of the surface wettability.

palavras-chave

MACHINING PERFORMANCE; INCONEL 718; TOOL; TEMPERATURE; INTERFACE; DESIGN; WEAR; WC

categoria

Chemistry; Engineering; Materials Science; Physics

autores

Rosas, J; Lopes, H; Guimaraes, B; Piloto, PAG; Miranda, G; Silva, FS; Paiva, OC

nossos autores

agradecimentos

This work was supported by FCT (Fundacao para a Ciencia e a Tecnologia) through the grant 2020.07155.BD and by the project POCI-01-0145-FEDER-030353 (SMARTCUT). Additionally, this work was supported by FCT national funds, under the national support to R&D units grant, through the reference projects UIDB/04436/2020 and UIDP/04436/2020.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".