resumo
Additive manufacturing (AM) has brought new possibilities to the moulding industry, particularly regarding the use of high-performance materials as maraging steels. This work explores 18Ni300 maraging steel reinforced with 4.5 vol.% TiC nanoparticles, fabricated by Selective Laser Melting (SLM), addressing the effect of post-fabrication aging treatment on both thermal and mechanical properties. Design of Experiments (DoE) was used to generate twenty-five experimental groups, in which laser power, scanning speed, and hatch distance were varied across five levels, with the aim of generating conclusions on optimal fabrication conditions. A comprehensive analysis was performed, starting with the nanocomposite feedstock and then involving the microstructural, mechanical, and thermal characterisation of SLM-fabricated nanocomposites. Nanocomposite relative density varied between 92.84% and 99.73%, and the presence of martensite, austenite, and TiC was confirmed in the as-built and heat-treated conditions. Results demonstrated a hardness of 411 HV for the as-built 18Ni300-TiC nanocomposite, higher than that of the non-reinforced steel, and this was further increased by performing aging treatment, achieving a hardness of 673 HV. Thermal conductivity results showed an improvement from similar to 12 W/m center dot K to similar to 19 W/m center dot K for nano-TiC-reinforced 18Ni300 when comparing values before and after heat treatment, respectively. Results showed that the addition of TiC nanoparticles to 18Ni300 maraging steel led to a combined thermal and mechanical performance suited for applications in which heat extraction is required, as in injection moulding.
palavras-chave
BULK-FORM NANOCOMPOSITES; AUSTENITE REVERSION; PREDICTIVE MODELS; CONDUCTIVITY; MICROSTRUCTURE; PRECIPITATION; COMPOSITES; DENSIFICATION; TEMPERATURE; EVOLUTION
categoria
Engineering; Materials Science
autores
Leite, FF; Coondoo, I; Vieira, JS; Oliveira, JM; Miranda, G
nossos autores
Grupos
G3 - Materiais Eletroquímicos, Interfaces e Revestimentos
G4 - Materiais Renováveis e Economia Circular
Projectos
CICECO - Aveiro Institute of Materials (UIDB/50011/2020)
CICECO - Aveiro Institute of Materials (UIDP/50011/2020)
Associated Laboratory CICECO-Aveiro Institute of Materials (LA/P/0006/2020)
agradecimentos
This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 and LA/P/0006/2020, financed by national funds through the FCT/MCTES (PIDDAC). The author, I. Coondoo would like to acknowledge Fundac & atilde;o para a Ciencia e a Tecnologia (FCT) I.P., through DL 57/2016/CP1482/CT0048 (https://doi.org/10.54499/DL57/2016/CP1482/CT0048).