resumo
Comparisons between simulated and experimental adsorption isotherms in MOFs are fraught with challenges. On the experimental side, there is significant variation between isotherms measured on the same system, with a significant percentage (similar to 20%) of published data being considered outliers. On the simulation side, force fields are often chosen "off-the-shelf" with little or no validation. The effect of this choice on the reliability of simulated adsorption predictions has not yet been rigorously quantified. In this work, we fill this gap by systematically quantifying the uncertainty arising from force field selection on adsorption isotherm predictions. We choose methane adsorption, where electrostatic interactions are negligible, to independently study the effect of the framework Lennard-Jones parameters on a series of prototypical materials that represent the most widely studied MOF "families". Using this information, we compute an adsorption "consensus isotherm" from simulations, including a quantification of uncertainty, and compare it against a manually curated set of experimental data from the literature. By considering many experimental isotherms measured by different groups and eliminating outliers in the data using statistical analysis, we conduct a rigorous comparison that avoids the pitfalls of the standard approach of comparing simulation predictions to a single experimental data set. Our results show that (1) the uncertainty in simulated isotherms can be as large as 15% and (2) standard force fields can provide reliable predictions for some systems but can fail dramatically for others, highlighting systematic shortcomings in those models. Based on this, we offer recommendations for future simulation studies of adsorption, including high-throughput computational screening of MOFs.
palavras-chave
METAL-ORGANIC FRAMEWORKS; VAPOR-LIQUID-EQUILIBRIA; UNITED-ATOM DESCRIPTION; EXPLICIT-HYDROGEN DESCRIPTION; TRANSFERABLE POTENTIALS; PHASE-EQUILIBRIA; MOLECULAR SIMULATION; NANOPOROUS MATERIALS; METHANE ADSORPTION; GAS-ADSORPTION
categoria
Chemistry; Physics
autores
McCready, C; Sladekova, K; Conroy, S; Gomes, JRB; Fletcher, AJ; Jorge, M
nossos autores
Projectos
CICECO - Aveiro Institute of Materials (UIDB/50011/2020)
CICECO - Aveiro Institute of Materials (UIDP/50011/2020)
Associated Laboratory CICECO-Aveiro Institute of Materials (LA/P/0006/2020)
agradecimentos
The authors are grateful to Prof. Veronique van Speybroeck and her research group for kindly providing input files for defective UiO-66 structures. We are also indebted to the NIST-ISODB team for their incredible effort in compiling and making large amounts of experimental adsorption data publicly available in an easy-to-use format. C.M. acknowledges EPSRC for a PhD studentship (ref EP/R513349/1). K.S. acknowledges EPSRC for a PhD studentship (ref EP/N509760/1). J.R.B.G. would like to acknowledge funding from project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020, and LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC).