authors |
Patrakeev, MV; Naumovich, EN; Kharton, VV; Yaremchenko, AA; Tsipis, EV; Nunez, P; Frade, JR |
nationality |
International |
journal |
SOLID STATE IONICS |
author keywords |
lanthanum nickelate; oxygen thermodynamics; coulometric titration; hole conductivity; seebeck coefficient |
keywords |
K2NIF4-TYPE STRUCTURE; SEEBECK COEFFICIENT; SYNGAS PRODUCTION; PEROVSKITE-TYPE; ION-TRANSPORT; SYNTHESIS GAS; DRY METHANE; CONDUCTIVITY; OXIDES; TRANSITION |
abstract |
The p(O-2)-T-delta diagram of La2Ni0.9Co0.1O4+delta with K2NiF4-type structure was determined by coulometric titration technique at 923-1223 K in the oxygen partial pressure range from 10(-4) to 0.6 atm, where the content of extra oxygen is 0.08-0.15. The Seebeck coefficient and total electrical conductivity, predominantly p-type electronic, were analyzed as functions of the oxygen nonstoichiometry. The p(O-2)-T-delta diagram can be adequately described by equilibrium process of oxygen incorporation, with electron hole localization on Ni2+ and CO3+ cations and the CO4+ state blocking neighboring nickel sites. As expected, the thermodynamic functions of these processes and the blocking factor are independent of defect concentrations. The concentration of oxygen vacancies, formed in the perovskite-like layers of K2NiF4-type lattice due to intrinsic Frenkel disorder, was found negligible. The temperature-activated character of hole mobility confirms a hopping conduction mechanism, whilst the corresponding activation energy, 10.6-16.0 kJ x mol(-1), decreases with increasing oxygen content. The partial molar enthalpy and entropy for overall oxygen intercalation reaction vary in the ranges - 286 to - 177 kJ mol(-1) and 153 to 164 J mol(-1) K-1, respectively. (C) 2004 Elsevier B.V. All rights reserved. |
publisher |
ELSEVIER SCIENCE BV |
issn |
0167-2738 |
year published |
2005 |
volume |
176 |
issue |
1-2 |
beginning page |
179 |
ending page |
188 |
digital object identifier (doi) |
10.1016/j.ssi.2004.06.003 |
web of science category |
Chemistry, Physical; Physics, Condensed Matter |
subject category |
Chemistry; Physics |
unique article identifier |
WOS:000226020900025
|
ciceco authors
impact metrics
journal analysis (jcr 2019):
|
journal impact factor |
3.107 |
5 year journal impact factor |
2.904 |
category normalized journal impact factor percentile |
58.409 |
dimensions (citation analysis):
|
|
altmetrics (social interaction):
|
|
|