Functional material properties of oxide thin films probed by atomic force microscopy on the nanoscale


Atomic force microscopy (AFM) is a highly versatile tool to study material functionality on the nanoscale. When use in contact mode, different material properties can be probed and imaged directly from the material response to an external stimulus. Most prevalent are the ones based on electromechanical phenomena, for example, piezoelectricity. Despite recent technical advances in AFM techniques, the quantification of functional material parameters based on electromechanical phenomena is still elusive. Only if quantitative material parameters can be extracted, can a correlation of nanoscale structure-function relationships be derived. This development would also benefit the integration of AFM-based techniques with techniques probing smaller or larger length and time scales as well as theoretical efforts for a full information integration across different disciplines. In this chapter, different approaches to quantify electromechanical sample responses and extract quantitative material properties through a fundamental understanding of cantilever dynamics and signal contributions of various electromechanical phenomena.


N.Balke, A.Tselev

nossos autores


Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".