Andrei Kavaleuski

Principal Researcher

Biography

Current position

Andrei Kavaleuski (Kovalevsky) (AK) is a tenured Principal Researcher at CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering (DEMaC), University of Aveiro, Portugal. He is a coordinator of CICECO´s research line 2, focused on energy and industrial applications.

 

Background and education

AK obtained PhD in physical chemistry in 2002 from Belarusian State University, focusing on mixed ionic-electronic conductors (MIECs) for energy conversion, chemical production and environmental monitoring applications, including oxygen permeation membranes and solid oxide fuel cells (SOFCs). This was followed by post-doctoral research at University of Aveiro (Portugal) and Flemish Institute for Technological Research (VITO, Belgium), with the main emphasis on developing new approaches to design ceramic membranes delivering high-purity oxygen for the chemical processing industry and medical treatments. Working as a post-doc in Aveiro in 2010-2013, AK diversified his research interests into the domain of electrochemical technologies for metals reduction and pyroelectrolysis process.

Current research activities

In 2012 AK started a new direction in CICECO research, focused on oxide thermoelectrics as cheap and much less toxic alternatives to traditional thermoelectric materials. Thermoelectrics provide green and sustainable solutions for electricity generation from waste heat and renewables (e.g., concentrated solar radiation, hot automotive exhaust, concrete and glass industry, etc.). Based on the absence of moving parts and simple operation principles, thermoelectric technology also offers self-sufficiency to enable mobile and remote applications. AK proposed new approaches for boosting thermoelectric performance in oxides, based on the defects engineering, unique structural and electronic tunability of these materials by imposed redox conditions and controlled interactions in the oxide-based composites. Another innovative approach coordinated by AK involves the application of unconventional techniques for processing oxide thermoelectrics such as laser floating zone method. Very recent research is focused on the fabrication of thermoelectric modules with the planar and tubular configuration based on the oxide components designed by laser.

Parallel research directions contributed or coordinated by AK include the micro- and nanostructural engineering of porous ceramics for catalytic and separation applications, design of cost-effective and highly active electrocatalysts for hydrogen and oxygen evolution electrodes, and direct electrochemical reduction of metal oxides. Particular challenges are:

- Cellular ceramics based on abundant components and possessing a large surface area, tunable pore size, appropriate thermal stability and tailored acid/basic functionalities, allowing modification with catalytically active species;

- Composite oxide-MXene materials for electrochemical water splitting and photocatalytic applications;

- Electrochemical reduction of bulk iron oxides ceramics and FeOx-based suspensions in alkaline medium.

 

Research output

AK co-authored ~150 SCI papers, with h-index of 35 and ~4300 citations, 5 book chapters and participated in more than 30 R&D projects, supported by European Commission and national funding agencies. In 2018-2021, he coordinates(ed) 4 R&D projects (3 national: 2 as PI and 1 as a co-PI and 1 European: as a local PI) with total funding of ~0.7 M€. From October 2020, AK is a supervisor of the responsible researcher within Horizon 2020 Marie Skłodowska-Curie Actions (MSCA) – Widening Fellowship. In 2017-2021 AK presented 12 invited/keynote talks highlighting his research at international conferences and workshops.

 

Supervising, teaching and professional service

As of July 2021, AK supervises 2 post-doctoral researchers, 4 PhD students, 1 MSc student and 1 MSc research fellow. In 2018-2020 3 MSc theses under his (co)supervision were defended. In 2020, an MSc thesis under his supervision was awarded the 1st Prize for best Master's thesis of the 2018-2019 and 2019-2020 academic years in the area of Materials Science and Engineering by the Portuguese Materials Society. AK contributes to the educational process at the University of Aveiro by teaching within Integrated Master´s Programs in Materials and Mechanical Engineering. AK is an active referee for ~ 60 SCI journals, including Chemical Society Reviews, Advanced Materials, Advanced Functional Materials, Nano Energy, Chemistry of Materials and Journal of Materials Chemistry A. In 2019 he was awarded by Publons as a top peer reviewer 2019 in cross-field. AK serves as an Editorial Board member for Springer Nature Applied Sciences (Springer Nature), International Journal of Molecular Sciences (MDPI), Solids (MDPI), Materials International (AMG Transcend Association) and Nanomaterials Science & Engineering (University of Aveiro) journals and participates in the advisory board of Heliyon journal (Cell Press). AK regularly contributes to the evaluation (referee and/or a member of evaluation panel) of the project proposals for the Research Council of Norway, ACS Petroleum Research Fund, Israel Science Foundation, M-ERA.NET, National Science Centre (Poland), Technology Agency of the Czech Republic, Slovak Academy of Sciences and German Research Foundation (DFG).

Scientific Interests

1. High-temperature thermoelectric harvesting of waste heat and renewable energy.

 Rapid development of high-temperature thermoelectric conversion is of special importance for green energy sector, in particular, by enabling self-sufficient technologies for mobile sectors or remote applications, and hybrid solutions involving thermoelectric modules. Among those applications, which are now considered most prospective, some can be highlighted, as conversion of the concentrated solar radiation, combination with photovoltaic systems and heat recovery from automotive exhaust. A broad impact is expected from the use of oxide-based thermoelectrics, provided by their natural abundance, environmental benefits and capability of operating at high temperatures, as an alternative to traditional Bi2Te3, Bi2Se3, PbTe –based thermoelectrics.

The research is mainly focused at oxide thermoelectric materials including donor-substituted strontium titanate-based materials, ZnO-based composites and various layered cobaltites. The main approaches include:

- Defect chemistry engineering, aimed at deliberate creation of the lattice defects, which result in enhanced phonon scattering and higher mobility of the charge carriers.

- Redox-induced nanostructuring and creation of compositional inhomogeneities (core-shell microstructures) for suppressing the thermal conductivity and faster electronic transport at the grain boundaries.

- Laser floating zone processing for oxide thermoelectrics, in order to create unique micro-/nanostructural features, triggering high thermoelectric performance.

 

 Key publications:

1. A.V. Kovalevsky*, K.V. Zakharchuk, M.H. Aguirre, W. Xie, S.G. Patrício, N.M. Ferreira, D. Lopes, S.A. Sergiienko, G. Constantinescu, S.M. Mikhalev, A. Weidenkaff, J.R. Frade, Redox engineering of strontium titanate-based thermoelectrics, 2020, J. Mater. Chem. A, vol. 8, p. 7317 (doi: https://doi.org/10.1039/C9TA13824B)

1. K.V. Zakharchuk, M. Widenmeyer, D.O. Alikin, W. Xie, S. Populoh, S.M. Mikhalev, A. Tselev, J.R. Frade, A. Weidenkaff, A.V. Kovalevsky*, A self-forming nanocomposite concept for ZnO-based thermoelectrics, J. Mater. Chem. A, 2018, vol. 6, pp.13386-13396 (https://doi.org/10.1039/C8TA01463A)

2. A.A. Yaremchenko, S. Populoh, S.G. Patrício, J. Macías, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, A.V. Kovalevsky*, Boosting thermoelectric performance by controlled defect chemistry engineering in Ta-substituted strontium titanate, Chem. Mater., 2015, vol. 27, pp. 4995-5006. (https://doi.org/10.1021/acs.chemmater.5b01389)

 


 2. Functional porous cellular ceramics for catalytic and separation applications.

cell1.jpg

Functional materials with controlled dimensionality and morphology are recognized as an essential part of numerous engineering solutions for energy, food, water and environmental problems. Those possessing large surface areas, tunable pore size, appropriate thermal stability and tailored acid/basic functionalities, allowing modification with catalytically active species, are of particular interest for both technology and fundamental research. Although many catalytic processes and related materials have already been discovered and improved during the last century, still many opportunities exist both for development of new approaches and even for new solutions in mature technologies.

The research is focused on the processing and bulk functionalization of the monolithic cellular ceramics for catalytic and separation applications. The main approaches include:

- Processing of porous cellular ceramics through emulsification of ceramic suspensions.

- Modification of the pores with nanostructured functional materials via hydrothermal treatment.

- In-situ modification of the pores with nanostructured transition metals for catalytic applications.

 

Key publications:

1. Y.A. Ivanova*, C. Freitas, D.V. Lopes, A.V. Kovalevsky, J.R. Frade, Cellular zirconia ceramics processed by direct emulsification, J. European Ceram. Soc., 2020, vol. 40, pp. 2056-2062 (doi: 10.1016/j.jeurceramsoc.2020.01.005)

2. M. Baptista, A.V. Kovalevsky*, A.R. Sarabando, M.C. Ferro, I. Capela, J.R. Frade, Highly-porous mayenite-based ceramics by combined suspension emulsification and reactive sintering, Mat. Lett., 2019, vol. 237, pp. 41-44 (doi: 10.1016/j.matlet.2018.11.061)

3. E. Lalli, N.M.D. Vitorino, C.A.M. Portugal, J.G. Crespo, C. Boi, J.R. Frade, A.V. Kovalevsky*, Flexible design of cellular Al2TiO5 and Al2TiO5 – Al2O3 composite monoliths by reactive firing, Materials and Design, 2017, vol. 131, pp. 92-101 (doi: 10.1016/j.matdes.2017.06.010)

 


3. Carbon-lean technologies for metal extraction.

1figure_adj.jpgAlthough classical extractive metallurgy is well-established, and energy consumption per  tonne of produced steel has been reduced by 50% in recent years, this sector is now facing stronger pressure to lower greenhouse gas emissions, and to comply with stricter international regulations. Thus, from a broad environmental perspective, one seeks new strategies for carbon-lean iron extraction, with emphasis on electrolysis.

The research is focused on less common technologies of direct electrochemical reduction of metal oxides and pyroelectrolysis. The main research directions include:

- Demonstration of the concept for iron pyroelectrolysis in magnesium aluminosilicate melts.

- Electrolytic in-situ reduction of iron oxides and ferrospinels in alkaline medium.

 

 Key publications:

1. D.V. Lopes, Y.A. Ivanova*, A.V. Kovalevsky, A.R. Sarabando, J.R. Frade, M.J. Quina, Electrochemical reduction of hematite-based ceramics in alkaline medium: Challenges in electrode design, Electrochim. Acta, 2019, vol. 327, p. 135060 (doi: 10.1016/j.electacta.2019.135060)

2. J.F. Monteiro, Yu.A. Ivanova*, A.V. Kovalevsky, D.K. Ivanou, J.R. Frade, Reduction of magnetite to metallic iron in strong alkaline medium, Electrochim. Acta, 2016, vol. 193, pp. 284-292. (https://doi.org/10.1016/j.electacta.2016.02.058)

3. N.M. Ferreira, A.V. Kovalevsky*, S.M. Mikhalev, F.M. Costa, J.R. Frade, Prospects and challenges of iron pyroelectrolysis in magnesium aluminosilicate melts near minimum liquidus temperature, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 9313-9325. (https://doi.org/10.1039/c5cp00858a)

 


4. Mixed ionic-electronic conductors for high- and intermediate temperature electrochemical applications.

miec.jpgMixed ionic-electronic conductors (MIECs) have been and continue to be of a strategic interest for various energy conversion applications, chemical production and environmental monitoring. These include fuel cells, oxygen permeation membranes, proton-conducting ceramic membranes, batteries and sensors. In a solid oxide fuel cell (SOFC) concept, the MIEC materials provide an enhancement of oxygen reduction reaction kinetics at the cathode, thus facilitating lower-temperature operation and enabling faster start-up times, improved stability and easier thermal management. The use of MIEC oxygen membranes has attracted much attention due to simplicity in construction and operation of reactors for partial oxidation of hydrocarbon feedstock. A dense MIEC membrane delivers pure oxygen from air to the hydrocarbon feed stream, driven by the gradient in partial pressure of oxygen across the membrane. The flux of oxygen-related defects (oxygen vacancies or interstitials) is compensated by a flux of electronic charge carriers. The aim to realize high oxygen fluxes through such membranes requires both fast surface oxygen exchange and ion diffusion in the bulk, achievable via structural tuning of the MIEC materials and design of the membrane architecture.

The research is focused both on the development of new materials with enhanced ionic transport properties and improved thermochemical stability, and conceptual solutions for membrane design. The main research directions include:

- Various substitution approaches for improving ionic transport, oxygen exchange kinetics, redox stability and suppressing the chemical expansion in perovskite- and K2NiF4-type materials.

- Assessment of asymmetric flat and tubular (hollow-fibre) membrane geometries for oxygen separation process.

 

Key publications:

1. N. Nasani, D. Pukazhselvan, A.V. Kovalevsky, A.L. Shaula, D.P. Fagg*, Conductivity recovery by redox cycling of yttrium doped barium zirconate proton conductors and exsolution of Ni-based sintering additives, J. Power Sources, 2017, vol. 339, pp. 93-102. (https://doi.org/10.1016/j.jpowsour.2016.11.036)

2. A.V. Kovalevsky*, A.A. Yaremchenko, V.A. Kolotygin, A.L. Shaula, V.V. Kharton, F.M.M. Snijkers, A. Buekenhoudt, J.R. Frade, E.N. Naumovich, Processing and oxygen permeation studies of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3-d membranes, J. Membr. Sci., 2011, vol. 380, pp. 68-80.

(doi: https://doi.org/10.1016/j.memsci.2011.06.034)

3. C. Buysse*, A. Kovalevsky, F. Snijkers, A. Buekenhoudt, S. Mullens, J. Luyten, J. Kretzschmar, S. Lenaerts, Development, performance and stability of sulphur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air, J. Membr. Sci., 2011, vol. 372, p. 239-248. (doi: https://doi.org/10.1016/j.memsci.2011.02.011

Main present collaborators

International:

Prof. A. Weidenkaff, Dr. W. Xie (Materials and Resources, Technical University of Darmstadt Germany)

Prof. A. Sotelo, Prof. M.A. Torres (Aragón Materials Science Institute, University of Zaragoza, Spain)

Prof. E. Rodríguez Castellón (Crystallography and Mineralogy Department, University of Malaga)

Prof. M.H. Aguirre (INA- Instituto de Nanociencia de Aragón, University of Zaragoza, Spain)

Prof. D.A. Macedo (Federal University of Paraíba, Brazil)

Prof. E. Guilmeau (Centre national de la recherche scientifique, Laboratoire de Cristallographie et Sciences des Matériaux, CNRS-CRISMAT, France)

Prof. I. Álvarez Serrano (Inorganic Chemistry Department, Complutense University of Madrid, Spain)

Dr. O. Merkulov, Prof. M. Patrakeev (Institute of Solid State Chemistry, UB RAS, Ekaterinburg, Russian Federation)

Dr. A. Galatanu (National Institute of Materials Physics, Bucharest, Romania)

Prof. C. Boi, Dr. E. Lalli (University of Bologna, Italy)

Dr. A.S. Panfilov (B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Ukraine)

 

Portugal:

Prof. J.R. Frade, Dr. A. Yaremchenko (Department of Materials and Ceramics Engineering, CICECO, University of Aveiro)

Dr. N.M. Ferreira, Prof. F.M. Costa, Dr. A. Tselev, (Physics Department, University of Aveiro)

Dr. D.P. Fagg, Dr. S.M. Mikhalev (TEMA-NRD, University of Aveiro)

Prof. J. Crespo, Dr. C. Portugal (LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa)

 

 Industry:

Bosch Termotecnologia, Portugal (Eng. Luis Monteiro, Eng. Nuno Oliveira)

Arcelormittal Maizieres Research, France (Dr. Hervé Lavelaine de Maubeuge)

Voltalia, Portugal (Dr. J.C. Amador)

Participation in scientific programs and projects

As team leader / principal investigator PI / co-PI:

1. “Redox-promoted design of advanced thermoelectrics: a step towards high-temperature applications”, Project POCI-01-0145-FEDER-031875, financed by COMPETE 2020 Program and National Funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement (2018-2021)

2. “Thermoelectric oxide composites: design through controlled interactions”, Project ID 101003375, Horizon 2020 Marie Skłodowska-Curie Actions (MSCA) – Widening Fellowships (WF), H2020-WF-02-2019, funded by European Commission, Supervisor of the Responsible Researcher (2020-2022).

3. “Development of new methodologies for industrial CO2-free steel production by electrowinning”, Project SIDERWIN DLV-768788-Horizon 2020/SPIRE10, supported by the European Commission (2017-2022), as UA team coordinator.

4. “Scanning probe approaches for characterization of nanoscale thermal conduction to guide synthesis of thermoelectric ceramics”, Project POCI-01-0145-FEDER-032117, financed by COMPETE 2020 Program and National Funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement (2018-2021), as a Co-PI.

5. “Towards highly-efficient oxide thermoelectrics by structural and defects engineering”, Project 441.00 DAAD, supported by program of bilateral cooperation between FCT and DAAD, Germany (2017-2018).

6. “Oxygen ionic and electronic transport in complex oxides under high gradient of oxygen chemical potential”, Project X04M-131, supported by Belarus Foundation for Fundamental Research (2004-2006).

7. “Synthesis and investigation of novel oxygen-ion conducting solid electrolytes”, Project X97M-029, supported by Belarus Foundation for Fundamental Research (1998-2000).

8. “Investigation of the processes limiting oxygen transport in mixed conducting materials”, Project No. 19981441 from 1998, supported by the Belarusian State University (1998-1999).
________________________________________________________________________________

As team member:

1. "DC-SOFEC: Novel approach to Power-to-Fuel: Comprehensive studies of anodic processes in Direct Carbon Solid Oxide Fuel-assisted Electrolysis Cell", Joint Project 2018/30/M/ST8/00675 with Research Institute of Power Engineering, supported by NCN, Poland (2019-2022).

2. “Novel catalyst concepts for tar-free oxy-steam gasification of biomass”, supported by FCT, Portugal, Project PTDC/CTM-CTM/30661/2017 (2018-2021)

3. “Smart Green Homes – BOSCH”, supported by COMPETE 2020 (Sistema de Incentivos à I&DT), industrial contract, Project POCI-01-0247-FEDER-007678 (2016-2020).

4. “Novel molten carbonate/ceramic composite materials for sustainable energy technologies with CO2 capture and utilization”, supported by European Commission within M-ERA.NET consortium, Project M-ERA-NET2/0009/2016 (2017-2020).

5. “Unitised regenerative fuel cell for efficient renewable energy supply: from materials to device”, supported by FCT/MEC, co-financed by FEDER under the PT2020 Partnership Agreement, Portugal, Project SAICTPAC/0032/2015 (2017-2019).

6. “Cellular oxide catalysts for emission lean combustion in porous media”, supported by FCT, Portugal, Project PTDC/CTM-ENE/2942/2014 (2016-2018).

7. “Zero CO2 emissions: challenge and foresight for innovative multi-ionic functional membranes”, supported by FCT, Portugal, Project PTDC/CTM-CER/6732/2014 (2016-2018).

8. “Facing the challenges of characterizing novel thermal materials and processes”, supported by FCT, Portugal, Project RECI/CTM-CER/0336/2012 (2013–2015).

9. “Materials and processes for alternative high temperature electrochemical processes”, supported by European Commission, Project IERO-RSF-PR-09099 (2010 – 2014).

10. “Oxide materials for alternative high temperature electrochemical applications”, supported by the European Commission, Project NMP2/CT/2004/515960 “ULCOS – Ultra Low CO2 Steelmaking” (2004-2009), 316 k€.

11. “Gas separation membranes for zero-emission fossil power plants”, HGF-Alliance “MEM-BRAIN” (2008-2010).

12. "Development of New Interstitial Oxide-Ion Conductors for Effective Oxygen Separation and Conversion of the Hydrocarbons", Project POCI/CTM/59197/2004, sponsored by FCT, Portugal (2005-2007), 80 k€.

13. "Novel Ceramic Membranes for Synthesis Gas Production", POCI/CTM/58570/2004, sponsored by FCT, Portugal (2005-2008), 80 k€.

14. “Novel layered ferrite materials with mixed ionic-electronic conductivity for applications in alternative energy sources”, Project PTDC/CTM/64357/2006, sponsored by the FCT, (2008-2011), 146 k€.

15. “Mixed conducting membranes for partial oxidation of natural gas to synthesis gas”, Project No. SfP 978002 (2003-2006), sponsored by NATO Science For Peace Sub-Program.

16. “Investigation of mechanical and ion transport processes in nickel-based ceramic membranes under high oxygen chemical potential gradient”, Project No. 00-0276 (2002-2003), sponsored by INTAS Program.

17. “Development and investigation of novel oxide materials with structure and chemical bonds providing a high mobility of oxygen ions”, Research Program “Substance-2” (2001-2005), sponsored by Belarus government.

18. Research Program “Development of Ceramic Assemblies for Oxygen Generating Electrochemical Module” (2001-2002), sponsored by Belarusian government.

19. “Development of physico-chemical principles of complex oxide ceramic fabrication using polymeric gels”, Research Program “Composite Materials” (2001-2005), sponsored by the Belarus Ministry of Education and Science.

20. “Development of novel ceramic materials having high oxygen permeability for electrochemical convertors of hydrocarbons”, Project X97-138 (1998-1999), sponsored by Belarus Foundation for Fundamental Research.

21. “Synthesis of novell comlex oxide materials with special electric properties and investigation of their physico-chemical characteristics”, Research Program “Substance” (1996-2000), sponsored by Belarus Academy of Science.

22. “Effect of oxide materials microstructure on transport properties and peculiarities of physico-chemical properties of oxide ceramics and conductive layers, produced from ultradispersed powders”, Research Program “Chemistry of Nanostructured Materials” (1996-2000), sponsored by the Belarus Ministry of Education and Science.

23. “Thermodynamic principles of modelling of oxygen transport process in solids”, Global Research Effort Program at the Belarusian State University (1996-2000), sponsored by the Belarus Ministry of Education and Science.

24. “Investigation of regularities in production of complex oxide materials having high oxygen permeability and electrochemical activity”, Global Research Effort Program at the Belarusian State University (1996-2000), sponsored by the Belarus Ministry of Education and Science.

25. “Investigation of effect of defects in cation sublattice on conjugate transport of oxygen ions and electrons in perovskite-type oxides”, Project MP-07 (1996-1997), sponsored by Belarus Foundation for Fundamental Research.

Supervising activity

Post-doctoral researchers:

- Gabriel Constantinescu, a fellow of Horizon 2020 Marie Skłodowska-Curie Actions (MSCA) – Widening Fellowships (WF), H2020-WF-02-2019, funded by European Commission, 2020-2022 (supervisor of the responsible researcher).

- Sergii Sergiienko, post-doctoral researcher within the project REMOTE (POCI-01-0145-FEDER-031875), October 2020 – ongoing.

- Gabriel Constantinescu, post-doctoral researcher within the project REMOTE (POCI-01-0145-FEDER-031875), 2019 – concluded in 2020.

- Sergii Sergiienko, grant within the project CENTRO-01-0145-FEDER-000005 (Programa Integrado de I&D SusPhotoSolutions - Soluções Fotovoltaicas Sustentáveis), 2019 – concluded in 2020 (supervising with Prof. J.R. Frade).

- Blanca Isabel Arias Serrano, post-doctoral researcher within the CICECO project (UID/CTM/50011/2019), 2019 – concluded in 2021(supervising with Dr. A.A. Yaremchenko and Prof. J.R. Frade).

- N.M.D. Vitorino “Permeable oxygen storage monoliths for chemical looping in fixed bed reactors” (FCT grant SFRH/BPD/99367/2013), University of Aveiro, 2014 – concluded in June 2016 (supervising with Prof. J.R. Frade).

- Y.A. Ivanova, grant within the project CENTRO-01-0145-FEDER-000005 (Programa Integrado de I&D SusPhotoSolutions - Soluções Fotovoltaicas Sustentáveis), 2017 - concluded in 2018 (supervising with Prof. J.R. Frade)

- N.M. Ferreira “Design of thermoelectric oxides by laser processing techniques” (FCT grant SFRH/BPD/111460/2015), University of Aveiro, 2016- ongoing (supervising with Prof. F.M. Costa).

- Shahed V.R. Modabberi “Towards highly-performing oxide thermoelectrics by redox-promoted nanostructuring”, (FCT grant SFRH/BPD/124238/2016), University of Aveiro, 2017- ongoing (supervising with Prof. F.M. Costa and Prof. A. Sotelo).

- Y.A. Ivanova, grant within the project CENTRO-01-0145-FEDER-000005 (Programa Integrado de I&D SusPhotoSolutions - Soluções Fotovoltaicas Sustentáveis), 2017-ongoing (supervising with Prof. J.R. Frade)


 

PhD students:

- Diogo João Breda Lopes, “Thermoelectric oxides: from microstructural engineering to devices by laser processing”, University of Aveiro, 2020 – ongoing (supervising with Dr. N.M. Ferreira). FCT grant: 2020.06454.BD

- Parisa Amirkhizi, “A Quest for High Performance Ceramic Thermoelectric Modules”, University of Aveiro, 2020 – ongoing (supervising with Dr.Shahed Rasekh Modabberi). FCT grant: 2020.08051.BD

- J.H.G.F. Nogueira, “Carbon-based functional nanomaterials from renewable natural resources: novel synthetic routes and water treatment applications”, 2020 - ongoing (supervising with Dr. A.L. Daniel-da-Silva). FCT grant: SFRH/BD/146249/2019.

- K.V. Zakharchuk, “Electrochemical elimination of NOx by reversible solid oxide cell with selective electrocatalysts”, 2018-ongoing (supervising with Dr. A. Yaremchenko). FCT grant: SFRH/BD/138773/2018.

- D.V.R. Lopes, “Electrochemical reduction of iron oxides into zero-valent iron for red mud valorisation”, concluded in 2020 (supervising with Prof. M.M.J. Quina and Prof. J.R. Frade). FCT grant: PD/BD/114106/2015.

- N.M. Ferreira, “Materials and concepts for CO2 lean ironmaking by pyroelectrolysis”, University of Aveiro, concluded in 2014 (supervising with Prof. J.R. Frade and Prof. F.M. Costa).


 

MSc students:

- Miguel Amado Vieira, “Hydrothermally-activated ceramic membranes for oxygen separation”, 2020-ongoing (supervising with Dr. A.A. Yaremchenko).

- D.J.B. Lopes, “Design of multifunctional titania-based photocatalysts by controlled redox reactions”, concluded in 2019 (supervising with Dra. A.L. Daniel-da-Silva).

- R. Santos, “(Ni,Mo)-TiO2 electrodes for electrochemical applications”, concluded in 2019 (supervising with Prof. J.R. Frade).

- F.P. Carreira, “Development of thermoelectric materials for high-temperature energy conversion by laser processing”, concluded in 2018 (supervising with Dr. N.M. Ferreira).

- I. Fortes, “Effects of laser processing on the properties of thermoelectric materials”, 2017-pending (supervising with Dr. N.M. Ferreira and Prof. F.M. Costa


 

Research fellows:

- Daniela V.R. Lopes, research (MSc) fellowship within the project SIDERWIN (DLV-768788-Horizon 2020/SPIRE10), 2020-ongoing.

- Diogo João Breda Lopes, research (MSc) fellowship within the project REMOTE (POCI-01-0145-FEDER-031875), 2019 – 2020 (supervising with Dr. Nuno Ferreira).

- M. Baptista, research (MSc) fellowship within the project Smart Green Homes SGH - POCI-01-0247-FEDER-007678, 2017-2019 (supervising with Prof. I. Capela).

- Blanca Isabel Arias Serrano, research (MSc) fellowship within the CICECO project (UID/CTM/50011/2013), 2017-2018 (supervising with Dr. A.A. Yaremchenko and Prof. J.R. Frade).

- K.V. Zakharchuk, research (BSc) fellowship within the CICECO project (UID/CTM/50011/2013), 2016-2017 (supervising with Dr. A.A. Yaremchenko and Prof. J.R. Frade).

- K.V. Zakharchuk, research (MSc) fellowship within the project Smart Green Homes SGH - POCI-01-0247-FEDER-007678, 2017-2018 (supervising with Dr. A.A. Yaremchenko and Prof. J.R. Frade).


 

Undergraduated students:

- Gonçalo Marques, Processamento a laser de materiais termoeléctricos e seus efeitos nas propriedades / Effects of the laser processing on the properties of thermoelectric materials, Project Physics (3rd year), 2020-ongoing (supervising with Dr. N.M. Ferreira).

- João Gabriel Pereira Grillo, Produção a laser de delafossitas e análise das suas propriedadaes termoelétricas/ Laser processing of delafossites and analysis of their thermoelectric properties, Project Physics (3rd year), 2020 (supervising with Dr. N.M. Ferreira).

- João Francisco Martins, Materiais termoelétricos à base de ZnO para a conversão de calor em eletricidade / Thermoelectric materials based on ZnO for heat-to-electricity conversion, Projeto com Materiais / Project with Materials (3rd year), 2016 (supervisor).

- Nuno Rosado Neves, Processamento a laser de materiais termoelétricos e suas propriedades / Laser processing of thermoelectric materials and their properties, Projeto Física / Project Physics (3rd year), 2017 (supervising with Dr. N.M. Ferreira and Prof. F.M. Costa).


 

Post-graduate research fellows / visiting students / young researchers:

  • over 10 from 2010.

 

Teaching activity

 

Year

Course / lecture

2017-2018

Teaching practical course “Laboratórios de Engenharia de Materiais II”/”Laboratories of Materials Engineering II” (code: 40786, Integrated Master´s Program in Materials Engineering, 3rd year), one group – 4h/week, University of Aveiro, Portugal

2016-ongoing

Teaching practical course “Materiais de Construção Mecânica”/”Materials of Mechanical Construction” (code: 46415, Integrated Master´s Program in Mechanical Engineering, 1st year), 4 h/week, University of Aveiro, Portugal

2015-2018

Short courses on thermoelectrics within various programs:

  • Joint PhD Program in Advanced Materials and Processing (AdvaMTech, 2015, coordinated by Prof. J. Vieira, UA);
  • Advanced Materials course within Integrated Master in Materials Engineering, DEMaC, UA (2016, 2018, coordinated by Prof. P. Vilarinho and Prof. F. Marques);
  • Informal Conversions (2016, coordinated by “Núcleo de Estudantes de Materiais da Associação Académica da Universidade de Aveiro” (NEM-AAUAv)”;
  • 4th DAEPHYS PhD student Workshop, University of Aveiro, 2018

2013-2014

Co-teaching practical course “Laboratório de Materiais I”/”Materials Laboratory I” (code: 47150), one group – 4h/week, University of Aveiro, Portugal

2010-2013

Short course on XRD and Rietveld refinement within the course “Cinética No Processamento Avançado de Sólidos”/“Kinetics in Advanced Materials Processing” (code: 45480, Doctoral Programs in Materials Science and Engineering, 1st year), coordinated by Prof. J. Frade, University of Aveiro, Portugal.

________________________________________________________________________________

Reviewing and evaluation activities

Referee of SCI journals:

Reviewing for ~60 SCI journal insluding Chemical Society Reviews, Advanced Materials, Advanced Functional Materials, Chemistry of Materials, Nano Energy and Journal of Materials Chemistry A.

Verified Peer Review Record at the Publons Platform:
https://publons.com/author/1487278/andrei-kovalevsky
________________________________________________________________________________

Editorial/Advisory Boards

- Editorial Board of Springer Nature Applied Sciences (Springer Nature): 2018 - ongoing

https://www.springer.com/engineering/journal/42452?detailsPage=editorialBoard

- Editorial Board of International Journal of Molecular Sciences (MDPI): 2018 - ongoing

https://www.mdpi.com/journal/ijms/sectioneditors/material_sciences

- Editorial Board of Solids (MDPI): 2020 - ongoing

https://www.mdpi.com/journal/solids/editors

- Editorial Board of Physchem (MDPI): 2020 - ongoing

https://www.mdpi.com/journal/physchem/editors

- Editorial Board of Materials International (AMG Transcend Association): 2019 - ongoing

https://materials.international/?page_id=20

- Editorial Board of Nanomaterials Science & Engineering (University of Aveiro): 2020 - ongoing

https://proa.ua.pt/index.php/nmse/about/editorialTeam

- Editorial Board of Heliyon journal (Cell Press): 2015-2019

- Advisory Board of Heliyon Chemistry section, Heliyon journal (Cell Press): 2019-ongoing

https://www.cell.com/heliyon/chemistry/editors

________________________________________________________________________________

Evaluations of projects/proposals

- Member of Evaluation Panel for The Research Council of Norway (RCN), Norwegian-Indian research projects on nanotechnology, microtechnology and advanced materials (2019);

- Evaluator of project proposals for ACS Petroleum Research Fund (2015,2019);

- Evaluator of project proposals for Israel Science Foundation (ISF) (2016);

- Evaluator of project proposals for The Research Council of Norway (2017-2019);

-  Evaluator of project proposals in M-ERA.NET calls (2017,2018,2020);

- Evaluator of project proposals for National Science Centre (Poland) (2018).

- Evaluator of project proposals for German Research Foundation (DFG) (2020).

- Evaluator of project proposals for The Technology Agency of the Czech Republic (2020).

- Evaluator of project proposals for ANI – National Innovation Agency, Portugal (2020).

- Evaluator of project proposals for Slovak Academy of Sciences (2021)

_____________________________________

Awards

Awards:

2020: Supervisor of the Master thesis awarded the 1st Prize for the best Master Thesis in 2018-2019 and 2019-2020 years in the area of Science and Engineering of Materials by Portuguese Society of Materials (SPM)

2019: Top peer reviewer 2019 in cross-field for the elite contributions to scholarly peer review and editorial pursuits internationally, Global Peer Review Awards by Publons

1997: Sevchenko Award for the best scientific work in natural science for thesis “Materials for high temperature electrochemical devices” (Belarus Ministry of Education and Science)

1995: The Best Student Scientific Work Award (Belarus Ministry of Education and Science)

1994: Soros Student Award (International Soros Science Education Program)

1995: Soros Student Award (International Soros Science Education Program)


 Individual grants:

2004: Postdoctoral fellowship from FCT, Portugal

2007: Postdoctoral fellowship from Belgian Federal Science Policy Office

2012: Development grant from Investigador FCT 2012 Program

Publications

Scopus search: (Last name: Kovalevsky; Initials or First Name: A; Affiliation: Aveiro)

Papers published in international SCI journals: ~150 (2021)

Papers published in other referred journals and proceedings: 8

Chapters in books: 5

 

h-factor: 35; average citations per article: 28.0 (Scopus, July 2021)

 


 Publications

 

Book chapters

  • A.V. Kovalevsky, Defects engineering for performing SrTiO3-based thermoelectric thin films: principles and selected approaches, In: “Advanced ceramic and metallic coating and thin film materials for energy and environmental applications”, Eds. J. Zhang, Y.-G. Jung, Springer, 2018, pp. 91-120.
  • F. Amaral, N. M. Ferreira, A. V. Kovalevsky, Thermoelectric Materials and the Measurement of Their Electrical Properties, In: “Electrical Measurements: Introduction, Concepts and Applications”, Ed. M.P.F. Graça, Nova Science Publishers, 2018, pp. 199-224.
  • A. Buekenhoudt, A. Kovalevsky, J. Luyten, F. Snijkers, Basic aspects in inorganic membrane preparation, In: “Comprehensive Membrane Science and Technology”, Eds. E. Drioli and L. Giorno, Elsevier, 2010, pp. 217-252.
  • V. Kharton, E.V. Tsipis, A.P. Carvalho, A.V.Kovalevsky, E.N. Naumovich, F.M.B. Marques, J.R. Frade and A.L. Shaula, Glass-Ceramic Sealants for SOFC-Based Systems, In: “Fuel Cell Technologies: State and Perspectives”, Springer-Verlag, 2005, pp. 231-238.
  • A. Kovalevsky, V. Kharton, E. Naumovich, F. Marques and J. Frade, Ionic transport in perovskite-related mixed conductors: ferrite-, cobaltite-, nickelate-, and gallate-based systems. In: “Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems”, Eds. N. Orlovskaya and N. Browning, Kluwer Academic Publ., Dordrecht-Boston-London, 2004, pp. 109-122.

 

International SCI journals:

2021

  • S.A. Sergiienko, D.V. Lopes, G. Constantinescu, M.C. Ferro, N.D. Shcherban, O.B. Tursunov, V.I. Shkepu, H. Pazniak, N.Y. Tabachkova, E.R. Castellón, A.V. Kovalevsky, MXene-containing composite electrodes for hydrogen evolution: Material design aspects and approaches for electrode fabrication, Int. J. Hydrogen Energy, 2021, vol. 46, pp. 11636-11651.
  • O.V. Merkulov, D. Lopes, A.A. Markov, N.M. Ferreira, M.V. Patrakeev, A.V. Kovalevsky, Tubular thermoelectric module based on oxide elements grown by the laser floating zone, ACS Appl. Energy Materials, 2021, vol. 4, pp. 5848–5857.
  • B.I. Arias-Serrano, S.M. Mikhalev, M.C. Ferro, D.M. Tobaldi, J.R. Frade, A.V. Kovalevsky, On the high-temperature degradation mechanism of ZnO-based thermoelectrics, J. European Ceram. Soc., 2021, vol. 41, pp. 1730-1734.
  • G. Constantinescu, Sh. Rasekh, P. Amirkhizi, D.V. Lopes, M.A. Vieira, A.V. Kovalevsky, J.C. Diez, A. Sotelo, M.A. Madre, M.A. Torres, Exploring the high-temperature electrical performance of Ca3-xLaxCo4O9 thermoelectric ceramics for moderate and low substitution levels, Symmetry, 2021, vol. 13, p. 782.
  • C.G.M. Lima, A.J.M. Araujo, R.M. Silva, R.A. Raimundo, J.P.F. Grilo, G. Constantinescu, A.V. Kovalevsky, D.A. Macedo, Electrical assessement of brownmillerite-type calcium ferrite materials obtained by proteic sol-gel route and by solid-state reaction using mollusk shells, J. Solid State Chem., 2021, vol. 299, p. 122172.
  • G. Constantinescu, S.M. Mikhalev, A.D. Lisenkov, D.V. Lopes, A.R. Sarabando, M.C. Ferro, T.F. da Silva, S.A. Sergiienko, A.V. Kovalevsky, Prospects for electrical performance tuning in Ca3Co4O9 materials be metallic Fe and Ni particles addition, Materials, 2021, vol. 14, p. 980.
  • Y.A. Ivanova, D.V. Lopes, E. Durana, A. Lisenkov, J.R. Frade, A.V. Kovalevsky, Microstructural design of cellular 3 YTZ-Al2O3 ceramic membranes, Ceram. Int., 2021, vol. 47, pp. 1040-1046.
  • A.S. Panfilov, G.E. Grechnev, A.A. Lyogenskaya, V.A. Pashchenko, L.O. Vasylechko, V.M. Hreb, A.V. Kovalevsky, Magnetic and structural properties of La1-xGdxCoO3 compounds, Physica B: Condens. Matter, 2021, vol. 609, p. 412848.

2020

  • N. Nasani, A.V. Kovalevsky, W. Xie, S. Rasekh, G. Constantinescu, A. Weidenkaff, D. Pukazhselvan, D.P. Fagg, Unravelling the effects of calcium substitution in BaGd2CoO5 Haldane gap 1D material and its thermoelectric performance, J. Phys. Chem. C, 2020, vol. 124, pp. 13017-13025.
  • N.M. Ferreira, D. Lopes, A.V. Kovalevsky, F.M. Costa, A. Sotelo, M.A. Madre, A. Rezania, Thermoelectric modules built using ceramic legs grown by laser floating zone, Ceram. Int., 2020, vol. 46, pp. 24318-24325.
  • A.A. Yaremchenko, J. Macías, A.V. Kovalevsky, B.I. Arias-Serrano, J.R. Frade, Electrical conductivity and thermal expansion of Ln-substituted SrTiO3 for solid oxide cell electrodes and interconnects: the effect of rare-earth cation size, J. Power Sources, 2020, vol. 474, p. 228531.
  • A.S. Panfilov, A.A. Lyogenskaya, G.E. Grechnev, V.A. Pashchenko, L.O. Vasylechko, V.M. Hreb, A.V. Kovalevsky, The effect of temperature and pressure on the spin state of cobalt ions in La1-xPrxCoO3 compounds, Low Temperature Physics, 2020, vol. 46, pp. 606-614.
  • A.S. Panfilov, A.A. Lyogenskaya, G.E. Grechnev, V.A. Pashchenko, L.O. Vasylechko, V.M. Hreb, A.V. Kovalevsky, Effects of temperature and pressure on the magnetic properties of La1-xPrxCoO3, Physica Status Solidi, 2020, vol. 257, p. 2000085.
  • A.V. Kovalevsky, K.V. Zakharchuk, M.H. Aguirre, W. Xie, S.G. Patrício, N.M. Ferreira, D. Lopes, S.A. Sergiienko, G. Constantinescu, S.M. Mikhalev, A. Weidenkaff, J.R. Frade, Redox engineering of strontium titanate-based thermoelectrics, J. Mater. Chem. A, 2020, vol. 8, p. 7317.
  • F.P. Carreira, N.M. Ferreira, A.V. Kovalevsky, Laser processing as a tool for designing donor-substituted calcium-manganite-based thermoelectrics, J. Alloys and Compounds, 2020, vol. 829, 154466.
  • D.V. Lopes, A.V. Kovalevsky, M.J. Quina, J.R. Frade, Electrochemical deposition of zero-valent iron from alkaline ceramic suspensions of Fe2-xAlxO3 for iron valorisation, J. Electrochem. Soc., 2020, vol. 167, 102508.
  • G. Constantinescu, A.R. Sarabando, Sh. Rasekh, D. Lopes, S. Sergiienko, P. Amirkhizi, J.R. Frade, A.V. Kovalevsky, Redox-promoted tailoring of the high-temperature electrical performance in Ca3Co4O9 materials by metallic cobalt addition, Materials, 2020, 13, p. 1060.
  • D. Lopes, A.L. Daniel-da-Silva, A.R. Sarabando, B.I. Arias-Serrano, E. Rodríguez-Aguado, E. Rodríguez-Castellón, T. Trindade, J.R. Frade, A.V. Kovalevsky, Design of multifunctional titania-based photocatalysts by controlled redox reactions, Materials, 2020, vol. 13, p. 758.
  • Y.A. Ivanova, C. Freitas, D.V. Lopes, A.V. Kovalevsky, J.R. Frade, Cellular zirconia ceramics processed by direct emulsification, J. European Ceram. Soc., 2020, vol. 40, pp. 2056-2062.
  • D.V. Lopes, E. Durana, F.R. Cesconeto, P.V. Almeida, A.V. Kovalevsky, M.J. Quina, J.R. Frade, Direct processing of cellular ceramics from a single red mud precursor, Ceram. Int., 2020, vol. 46, pp. 16700-16707.

2019

  • D.V. Lopes, Y.A. Ivanova, A.V. Kovalevsky, A.R. Sarabando, J.R. Frade, M.J. Quina, Electrochemical reduction of hematite-based ceramics in alkaline medium: Challenges in electrode design, Electrochim. Acta, 2019, vol. 327, p. 135060.
  • N.M. Ferreira, N.R. Neves, M.C. Ferro, M.A. Torres, M.A. Madre, F.M. Costa, A. Sotelo, A.V. Kovalevsky, Growth rate effects on the thermoelectric performance of CaMnO3-based ceramics, J. European Ceram. Soc., 2019, vol. 39, pp. 4184-4188.
  • B.I. Arias-Serrano, W. Xie, M.H. Aguirre, D.M. Tobaldi, A.R. Sarabando, Sh. Rasekh, S.M. Mikhalev, J.R. Frade, A. Weidenkaff, A.V. Kovalevsky, Exploring tantalum as a potential dopant to promote the thermoelectric performance of zinc oxide, 2019, Materials, vol. 12, p. 2057.
  • A.A. Emerenciano, A.J.M. Araújo, J.P.F Grilo, D.A. Macedo, Sh. Rasekh, A.V. Kovalevsky, C.A. Paskocimas, R.M. Nascimento, Environmentally friendly synthesis methods to obtain the misfit [Ca2CoO3-δ]0.62[CoO2] thermoelectric material, Mater. Lett., 2019, vol. 254, pp. 286-289.
  • K.V. Zakharchuk, D.M. Tobaldi, X. Xiao, W. Xie, S.M. Mikhalev, J.F. Martins, J.R. Frade, A. Weidenkaff, A.V. Kovalevsky, Synergistic effects of zirconium- and aluminum co-doping on the thermoelectric performance of zinc oxide, J. Europ. Ceram. Soc., 2019, vol. 39, pp. 1222-1229.
  • M.A. Torres, F.M. Costa, D. Flahaut, K. Touati, S. Rasekh, N.M. Ferreira, J.C. Allouche, M. Depriester, M.A. Madre, A.V. Kovalevsky, J.C. Diez, A. Sotelo, Significant enhancement of the thermoelectric performance in Ca3Co4O9 thermoelectric materials through combined strontium substitution and hot-pressing process, J. Europ. Ceram. Soc., 2019, vol. 39, pp. 1186-1192.
  • M. Baptista, A.V. Kovalevsky, A.R. Sarabando, M.C. Ferro, I. Capela, J.R. Frade, Highly-porous mayenite-based ceramics by combined suspension emulsification and reactive sintering, Mat. Lett., 2019, vol. 237, pp. 41-44.
  • N.M. Ferreira, M.C. Ferro, A.R. Sarabando, A. Ribeiro, A. Davarpanah, V. Amaral, M.A. Madre, A.V. Kovalevsky, M.A. Torres, F.M. Costa, A. Sotelo, Improvement of thermoelectric properties of Ca0.9Gd0.1MnO3 by powder engineering through K2CO3 additions, J. Mater. Sci., 2019, vol. 54, pp. 3252-3261.

2018

  • K.V. Zakharchuk, M. Widenmeyer, D.O. Alikin, W. Xie, S. Populoh, S.M. Mikhalev, A. Tselev, J.R. Frade, A. Weidenkaff, A.V. Kovalevsky, A self-forming nanocomposite concept for ZnO-based thermoelectrics, J. Mater. Chem. A, 2018, vol. 6, pp.13386-13396.
  • X. Xiao, M. Widenmeyer, K. Mueller, M. Scavini, S. Checchia, C. Castellano, D. Ma, S. Yoon, W. Xie, U. Starke, K. Zakharchuk, A. Kovalevsky, A. Weidenkaff, A squeeze on the perovskite lattice improves the thermoelectric performance of Europium Calcium Titanates, Materials Today Physics, 2018, vol. 7, pp. 96-105.
  • D.V. Lopes, A.V. Kovalevsky, M.J. Quina, J.R. Frade, Processing of highly-porous cellular iron oxide-based ceramics by emulsification of ceramic suspensions, Ceram. Int., 2018, vol. 44, pp. 20354-20360.
  • N.M. Ferreira, F.M. Costa, A.V. Kovalevsky, M.A. Madre, M.A. Torres, J.C. Diez, A. Sotelo, New environmentally friendly Ba-Fe-O thermoelectric material by flexible laser floating zone processing, Scripta Mat., 2018, vol. 145, pp. 54-57.
  • A.D. Brandão, N. Nasani, A.A. Yaremchenko, A.V. Kovalevsky, D.P. Fagg, Solid solution limits and electrical properties of scheelite SryLa1-yNb1-xVxO4-d materials for x=0.25 and 0.30 as potential proton conducting ceramic electrolytes, Int. J. Hydrogen En., 2018, vol. 43, pp. 18682-18690.
  • N. Nayak, N. Vitorino, J.R. Frade, A.V. Kovalevsky, V.D. Alves, J.G. Crespo, C.A.M. Portugal, Design of alumina monoliths by emulsion-gel casting: Understanding the monolith structure from a rheological approach, Materials and Design, 2018, vol. 157, pp. 119-129.
  • N.M. Ferreira, M.C. Ferro, M.A. Valente, J.R. Frade, F.M. Costa, A.V. Kovalevsky, Unusual redox behaviour of the magnetite/hematite core-shell structures processed by the laser floating zone method, Dalton Transactions, 2018, vol. 47, pp. 5646-5651.

2017

  • E. Lalli, N.M.D. Vitorino, C.A.M. Portugal, J.G. Crespo, C. Boi, J.R. Frade, A.V. Kovalevsky, Flexible design of cellular Al2TiO5 and Al2TiO5 – Al2O3 composite monoliths by reactive firing, Materials and Design, 2017, vol. 131, pp. 92-101.
  • A.V. Kovalevsky, M.H. Aguirre, S. Populoh, S.G. Patrício, N.M. Ferreira, S.M. Mikhalev, D.P. Fagg, A. Weidenkaff, J.R. Frade, Designing strontium titanate-based thermoelectrics: insight into defect chemistry mechanisms, J. Mater. Chem. A, 2017, vol. 5, pp. 3909-3922.
  • X. Xiao, M. Widenmeyer, W. Xie, T. Zou, S. Yoon, M. Scavini, S. Checchia, Z. Zhong, P. Hansmann, S. Kilper, A. Kovalevsky, A. Weidenkaff, Tailoring the structure and thermoelectric properties of BaTiO3 via Eu2+ substitution, Phys. Chem. Chem. Phys., 2017, vol. 19, pp13469-13480.
  • N. Nasani, C.M. Oliveira Rocha, A.V. Kovalevsky, G. Otero Irurueta, S. Populoh, P. Thiel, A. Weidenkaff, F. Neto Da Silva, D.P. Fagg, Exploring the Thermoelectric Performance of BaGd2NiO5 Haldane Gap Materials, Inorg. Chem., 2017, vol. 56, pp. 2354-2362.
  • N. Nasani, D. Pukazhselvan, A.V. Kovalevsky, A.L. Shaula, D.P. Fagg, Conductivity recovery by redox cycling of yttrium doped barium zirconate proton conductors and exsolution of Ni-based sintering additives, J. Power Sources, 2017, vol. 339, pp. 93-102.
  • N.M.D. Vitorino, A.V. Kovalevsky, M.C. Ferro, J.C.C. Abrantes, J.R. Frade, Design of NiAl2O4 cellular monoliths for catalytic applications, Materials and Design, 2017, vol. 117, pp. 332-337.
  • Y.A. Ivanova, J.F. Monteiro, L.B. Teixeira, N. Vitorino, A.V. Kovalevsky, J.R. Frade, Designed porous microstructures for electrochemical reduction of bulk hematite ceramics, Materials and Design, 2017, vol. 122, pp. 307-314.
  • D. Pukazhselvan, N. Nasani, T. Yang, I. Bdikin, A.V. Kovalevsky, D.P. Fagg, Dehydrogenation properties of magnesium hydride loaded with Fe, Fe−C, and Fe−Mg additives, ChemPhysChem, 2017, vol. 18, pp. 287-291.
  • N.M. Ferreira, M.C. Ferro, D.P. Fagg, F.M. Costa, J.R. Frade, A.V. Kovalevsky, Exploring the effects of silica and zirconia additives on electrical and redox properties of ferrospinels, Journal of the European Ceramic Society, 2017, vol. 37, pp.2621-2628.
  • N.M. Ferreira, A.V. Kovalevsky, M.A. Valente, J.C. Waerenborgh, J.R. Frade, F.M. Costa, Structural and redox effects in iron-doped magnesium aluminosilicate, J. Cryst. Growth, 2017, vol. 457, pp. 19-23.

2016

  • N.M. Ferreira, M.C. Ferro, S.M. Mikhalev, F.M. Costa, J.R. Frade, A.V. Kovalevsky, Guidelines to design multicomponent ferrospinels for high-temperature applications, RSC Adv., 2016, vol. 6, 32540-32548.
  • A. Sotelo, F.M. Costa, N.M. Ferreira, A. Kovalevsky, M.C. Ferro, V.S. Amaral, J.S. Amaral, Sh. Rasekh, M.A. Torres, M.A. Madre, J.C. Diez, Tailoring Ca3Co4O9 microstructure and performances using a transient liquid phase sintering additive, J. Europ. Ceram. Soc., 2016, vol. 36, pp. 1025-1032.
  • J.F. Monteiro, Yu.A. Ivanova, A.V. Kovalevsky, D.K. Ivanou, J.R. Frade, Reduction of magnetite to metallic iron in strong alkaline medium, Electrochim. Acta, 2016, vol. 193, pp. 284-292.
  • D. Pukazhselvan, J. Perez, N. Nasani, I. Bdikin, A.V. Kovalevsky, D.P. Fagg, Formation of MgxNbyOx+y through the mechanochemical reaction of MgH2 and Nb2O5, and its effect on the hydrogen-storage behaviour of MgH2, ChemPhysChem, 2016, vol. 17, pp. 178-183.
  • N.M. Ferreira, A.V. Kovalevsky, F.M. Costa, J.R. Frade, Processing effects on properties of (Fe,Mg,Al)3O4 spinels as potential consumable anodes for pyroelectrolysis, J. Am. Ceram. Soc., 2016, vol. 99, pp. 1889-1893.
  • K. Miyazawa, F. Amaral, A.V. Kovalevsky, M.P.F. Graça, Hybrid microwave processing of Ca3Co4O9 thermoelectrics, Ceram. Int., 2016, vol. 42, pp. 9482-9487.
  • N.M. Ferreira, A.V. Kovalevsky, M.C. Ferro, F.M. Costa, J.R. Frade, A new concept of ceramic consumable anode for iron pyroelectrolysis in magnesium aluminosilicate melts, Ceram. Int., 2016, vol. 42, pp. 11070-11076.
  • N.M.D. Vitorino, A.V. Kovalevsky, M.C.C. Azevedo, J.C.C. Abrantes, J.R. Frade, Self-functionalization of cellular alumina monoliths in hydrothermal conditions, J. Europ. Ceram. Soc., 2016, vol. 36, pp.1053-1058.
  • N.M. Ferreira, A.V. Kovalevsky, M.A. Valente, J.C. Waerenborgh, J.R. Frade, F.M. Costa, Structural and redox effects in iron-doped magnesium aluminosilicate, J. Cryst. Growth, 2016, vol. 457, pp. 19-23.
  • N.M. Ferreira, A.V. Kovalevsky, M.A. Valente, N.A. Sobolev, J.C. Waerenborgh, F.M. Costa, J.R. Frade, Iron incorporation into magnesium aluminosilicate glass network under fast laser floating zone processing, Ceram. Int., 2016, vol. 42, pp. 2693-2698.
  • N. Vitorino, C. Freitas, A.V. Kovalevsky, J.C.C. Abrantes, J.R. Frade, Cellular MgAl2O4 spinels prepared by reactive sintering of emulsified suspensions, Mat. Lett., 2016, vol. 164, pp. 190-193.

2015

  • A.A. Yaremchenko, S. Populoh, S.G. Patrício, J. Macías, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, A.V. Kovalevsky, Boosting thermoelectric performance by controlled defect chemistry engineering in Ta-substituted strontium titanate, Chem. Mater., 2015, vol. 27, pp. 4995-5006.
  • N.M.D. Vitorino, A.V. Kovalevsky, J.C.C. Abrantes, J.R. Frade, Hydrothermal synthesis of boehmite in cellular alumina monoliths for catalytic and separation applications, J. Europ. Ceram. Soc., 2015, vol. 35, pp. 3119-3125.
  • A.V. Kovalevsky, S. Populoh, S.G. Patrício, P. Thiel, M.C. Ferro, D.P. Fagg, J.R. Frade, A. Weidenkaff, Design of SrTiO3-based thermoelectrics by tungsten substitution, J. Phys. Chem. C, 2015, vol. 119, pp.4466-4478.
  • N.M. Ferreira, A.V. Kovalevsky, S.M. Mikhalev, F.M. Costa, J.R. Frade, Prospects and challenges of iron pyroelectrolysis in magnesium aluminosilicate melts near minimum liquidus temperature, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 9313-9325.
  • N. Nasani, D. Ramasamy, S. Mikhalev, A.V. Kovalevsky, D.P. Fagg, Fabrication and electrochemical performance of a stable, anode supported thin BaCe0.4Zr0.4Y0.2O3-d electrolyte protonic ceramic fuel cell, J. Power Sources, 2015, vol. 278, pp. 582-589.

2014

  • A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade, Towards a high thermoelectric performance in rare-earth substituted SrTiO3: Effects provided by strongly-reducing conditions, Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 26946-26954.
  • A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade, Effect of A-site cation deficiency on the thermoelectric performance of donor-substituted strontium titanate, J. Phys. Chem. C, 2014, vol. 118, pp. 4596-4606.
  • R.G. Carvalho, A.V. Kovalevsky, M.W. Lufaso, R.F. Silva, F.M. Costa, F.M. Figueiredo, Ionic conductivity of directionally solidified zirconia-mullite eutectics, Solid State Ionics, 2014, vol. 256, pp. 45-51.
  • N.M. Ferreira, A.V. Kovalevsky, E.N. Naumovich, A.A. Yaremchenko, K.V. Zakharchuk, F.M. Costa, J.R. Frade, Effects of transition metal additives on redox stability and high-temperature electrical conductivity of (Fe,Mg)3O4 spinels, J. Eur. Ceram. Soc., 2014, vol. 34, pp. 2339-2350.
  • N.M. Ferreira, A.V. Kovalevsky, J.C. Waerenborgh, M. Quevedo-Reyes, A.A. Timopheev, F.M. Costa, J.R. Frade, Crystallization of iron-containing Si-Al-Mg-O glasses under laser floating zone conditions, J. Alloys Comp., 2014, vol. 611, pp. 57-64.

2013

  • A.V. Kovalevsky, A.A. Yaremchenko, E.N. Naumovich, N.M. Ferreira, S.M. Mikhalev, F.M. Costa, J.R. Frade, Redox stability and high-temperature electrical conductivity of magnesium- and aluminium-substituted magnetite, J. Europ. Ceram. Soc., 2013, vol. 33, pp. 2751-2760.
  • A.V. Kovalevsky, A.A. Yaremchenko, S, Populoh, A. Weidenkaff, J.R. Frade, Enhancement of thermoelectric performance in strontium titanate by praseodymium substitution, J. Appl. Phys., 2013, vol. 113, pp. 053704.
  • N.M. Ferreira, A. Kovalevsky, M.A. Valente, F.M. Costa, J. Frade, Magnetite/hematite core/shell fibres grown by laser floating zone method, Appl. Surf. Sci., 2013, vol. 278, pp. 203-206.
  • A.A. Yaremchenko, C. Buysse, V. Middelkoop, F. Snijkers, A. Buekenhoudt, J.R. Frade, A.V. Kovalevsky, Impact of sulphur contamination on the oxygen transport mechanism through Ba0.5Sr0.5Co0.8Fe0.2O3-d: Relevant issues in the development of capillary and hollow fibre membrane geometry, J. Membr. Sci., 2013, vol. 428, pp. 123-130.
  • J.F. Monteiro, J.C. Waerenborgh, A.V. Kovalevsky, A.A. Yaremchenko, J.R. Frade, Synthesis of Sr0.9K0.1FeO3-d electrocatalysts by mechanical activation, J. Solid State Chem., 2013, vol. 198, pp. 169-175.
  • E.M. Domingues, E.V. Tsipis, A.A. Yaremchenko, F.M. Figueiredo, J.C. Waerenborgh, A.V. Kovalevsky, J.R. Frade, Redox stability and electrical conductivity of Fe2.3Mg0.7O4±d spinel prepared by mechanochemical activation, J. Europ. Ceram. Soc., 2013, vol. 33, pp. 1307-1315.

2012

  • A.V. Kovalevsky, E.N. Naumovich, A.A. Yaremchenko, J.R. Frade, High-temperature conductivity, stability and redox properties of Fe3-xAlxO4 spinel-type materials, J. Europ. Ceram. Soc., 2012, vol. 32, pp. 3255-3263.
  • F. Snijkers, C. Buysse, V. Middelkoop, A. Buekenhoudt, A. Kovalevsky, Mixed conducting ceramic capillary membranes for catalytic membrane reactors: Performance of Ba0.5Sr0.5Co0.8Fe0.2O3-d capillaries, Adv. Mat. Res., 2012, vol. 560-561, pp. 853-859.
  • J. Van Noyen, V. Middelkoop, C. Buysse, A. Kovalevsky, F. Snijkers , A. Buekenhoudt, S. Mullens, J. Luyten, J. Kretzschmar, S. Lenaerts, Fabrication of perovskite capillary membranes for high temperature gas separation, Catalysis Today, 2012, vol. 193, pp. 172-178.

2011

  • A.V. Kovalevsky, A.A. Yaremchenko, V.A. Kolotygin, A.L. Shaula, V.V. Kharton, F.M.M. Snijkers, A. Buekenhoudt, J.R. Frade, E.N. Naumovich, Processing and oxygen permeation studies of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3-d membranes, J. Membr. Sci., 2011, vol. 380, pp. 68-80.
  • C. Buysse, A. Kovalevsky, F. Snijkers, A. Buekenhoudt, S. Mullens, J. Luyten, J. Kretzschmar, S. Lenaerts, Development, performance and stability of sulphur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air, J. Membr. Sci., 2011, vol. 372, p. 239-248.
  • D.J. Cumming, V.V. Kharton, A.A. Yaremchenko, A.V. Kovalevsky, J.A. Kilner, Electrical properties and dimensional stability of Ce-doped SrTiO3-d for solid oxide fuel cell applications, J. American Ceram. Soc., 2011, vol. 94, pp. 2993-3000.
  • A.V. Kovalevsky, C. Buysse, F. Snijkers, A. Buekenhoudt, J. Luyten, J. Kretzschmar, S. Lenaerts, Oxygen exchange-limited transport and surface activation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ capillary membranes”, J. Membr. Sci., 2011, vol. 368, pp. 223-232.
  • K.E. Colombo, V.V. Kharton, A.P. Viskup, A.V. Kovalevsky, A.L. Shaula, O. Bolland, Simulation of a mixed-conducting membrane-based gas turbine power plant for CO2 capture: system level analysis of operation stability and individual process unit degradation, J. Solid State Electrochem., 2011, vol. 15, p. 329-347.
  • A.V. Kovalevsky, A.A. Yaremchenko, V.A. Kolotygin, F.M.M. Snijkers, V.V. Kharton, A. Buekenhoudt, J.J. Luyten, Oxygen permeability and stability of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3−δ ceramic membranes, Solid State Ionics, 2011, vol. 192, p. 677-681.
  • A.A. Yaremchenko, A.V. Kovalevsky, E.N. Naumovich, V.V. Kharton, J.R. Frade, High-temperature electrical properties of magnesiowustite Mg1−xFexO and spinel Fe3−xyMgxCryO4 ceramics, Solid State Ionics, 2011, vol. 192, p. 252-258.
  • A.A. Yaremchenko, E.V. Tsipis, A.V. Kovalevsky, J.C. Waerenborgh, V.V. Kharton, Stability, oxygen permeability and chemical expansion of Sr(Fe,Al)O3−δ- and Sr(Co,Fe)O3−δ-based membranes, Solid State Ionics, 2011, vol. 192, p. 259-268.
  • E.V. Tsipis, E.N. Naumovich, M.V. Patrakeev, A.A. Yaremchenko, I.P. Marozau, A.V. Kovalevsky, J.C. Waerenborgh, V.V. Kharton, Oxygen deficiency, vacancy clustering and ionic transport in (La,Sr)CoO3−δSolid State Ionics, 2011, vol. 192, p. 42-48.
  • A. Brandão, J.F. Monteiro, A.V. Kovalevsky, D.P. Fagg, V.V. Kharton, J.R. Frade, Guidelines for improving resistance to CO2 of materials for solid state electrochemical systems, Solid State Ionics, 2011, vol. 192, p. 16-20.

2010

  • C. Buysse, A. Kovalevsky, F. Snijkers, A. Buekenhoudt, S. Mullens, J. Luyten, J. Kretzschmar, S. Lenaerts, Fabrication and oxygen permeability of gastight, macrovoid-free Ba0.5Sr0.5Co0.8Fe0.2O3−δ capillaries for high temperature gas separation, J. Membr. Sci., 2010, vol. 359, p. 86-92.

2009

  • A.L. Shaula, E.N. Naumovich, A.P. Viskup, V.V. Pankov, A.V. Kovalevsky, V.V. Kharton, Oxygen transport in La2NiO4+d:Assessment of surface limitations and multilayer membrane architectures, Solid State Ionics, 2009, vol. 180, p. 812-816.

2008

  • V.V. Kharton, A.V. Kovalevsky, M.V. Patrakeev, E.V. Tsipis, A.P. Viskup, V.A. Kolotygin, A.A. Yaremchenko, A.L. Shaula, E.A. Kiselev, J.C. Waerenbourgh, Oxygen nonstoichiometry, mixed conductivity, and Mossbauer spectra of Ln0.5A0.5FeO3-d (Ln=La-Sm, A= Sr, Ba): Effects of cation size, Chem. Mater., 2008, vol. 20, p. 6457-6467.
  • A.A. Yaremchenko, A.V. Kovalevsky, V.V. Kharton, Mixed conductivity, stability and electrochemical behaviour of perovskite-type (Sr0.7Ce0.3)1-xMn1-yCryO3-dSolid State Ionics, 2008, vol. 179, p. 2181-2191.
  • D. Ivanova, A. Kovalevsky, V.V. Kharton, F.M.B. Marques, Silica-scavenging effects in ceria-based solid electrolytes, Boletin de la Sociedad Espanola de Ceramica y Vidrio, 2004, vol. 47, pp.201-206.
  • A.A. Yaremchenko, D.O. Bannikov, A.V. Kovalevsky, V.A. Cherepanov, V.V. Kharton, High-temperature transport properties, thermal expansion and cathodic performance of Ni- substituted LaSr2Mn2O7-dJ. Solid State Chemistry, 2008, vol. 181, p. 3024-3032.
  • A.V. Kovalevsky, V.V. Kharton, F.M.M. Snijkers, J.F.C. Cooymans, J.J. Luyten, J.R. Frade, Processing and oxygen permeability of asymmetric ferrite-based ceramic membranes, Solid State Ionics, 2008, vol. 179, p. 61-65.
  • D. Ivanova, E.M.C.L.G.P. Lima, A. Kovalevsky, F.M.L. Figueiredo, V.V. Kharton, F.M.B. Marques, Heterogeneous ceramics formed by grain boundary engineering, Ionics, 2008, vol. 14, p. 349-356.

2007

  • A.V. Kovalevsky, V.V. Kharton, F.M.M. Snijkers, J.F.C. Cooymans, J.J. Luyten, F.M.B. Marques, Oxygen transport and stability of asymmetric SrFe(Al)O3-d - SrAl2O4 composite membranes, J. Membr. Sci., 2007, vol. 301, pp. 238-244.
  • A.V. Kovalevsky, V.V. Kharton, A.A. Yaremchenko, Y.V. Pivak, E.V. Tsipis, S.O. Yakovlev, A.A. Markov, E.N. Naumovich and  J.R. Frade, Oxygen permeability, stability and electrochemical behavior of Pr2NiO4+d – based materials, J. Electroceramics, 2007, vol. 18, pp. 205-218.
  • A.V. Kovalevsky, V.V. Kharton, A.A. Yaremchenko, Y.V. Pivak, E.N. Naumovich, J.R. Frade, Stability and oxygen transport properties of Pr2NiO4+δ ceramics, J. European Ceram. Soc., vol. 27, 2007, pp. 4269-4272.
  • V.V. Kharton, A.V. Kovalevsky, M. Avdeev, E.V. Tsipis, M.V. Patrakeev, A.A. Yaremchenko, E.N. Naumovich and J.R. Frade, Chemically induced expansion of La2NiO4+d - based materials, Chem. Mater., 2007, vol. 19, pp. 2027-2033.
  • V.V. Kharton, J.C. Waerenborgh, A.V. Kovalevsky, G.C. Mather, A.P. Viskup, M.V. Patrakeev, P. Gaczyński, A.A. Yaremchenko and V.V. Samakhval,Redox behavior and transport properties of    La0.5-2xCexSr0.5+xFeO3-d and La0.5-2ySr0.5+2yFe1-yNbyO3-d perovskites, Solid State Sciences, 2007, vol. 9, pp. 32-42.
  • S. Yakovlev, V. Kharton, A.A. Yaremchenko, A. Kovalevsky, E. Naumovich, J. Frade, Mixed conductivity, thermal expansion and defect chemistry of A-site deficient LaNi0.5Ti0.5O3-δ, J. Eur. Ceram. Soc., 2007, vol. 27, pp. 4279-4282.
  • V.V. Kharton, M.V. Patrakeev, J.C. Waerenborgh, A.V. Kovalevsky, Y.V. Pivak, P. Gaczyński, A.A. Markov and A.A. Yaremchenko, Oxygen nonstoichiometry, Mössbauer spectra and mixed conductivity of Pr0.5Sr0.5FeO3−δJ. Phys. Chem. Solids, 2007, vol. 68, pp. 355-366.
  • Y.V. Pivak, V.V. Kharton, A.A. Yaremchenko, S.O. Yakovlev, A.V. Kovalevsky, J.R. Frade and F.M.B. Marques, Phase relationships and transport in Ti-, Ce- and Zr-substituted lanthanum silicate systems, J. Eur. Ceram. Soc., 2007, vol. 27 (6), pp. 2445-2454.

2006

  • A.V. Kovalevsky, F. M. B. Marques, V. V. Kharton, F. Maxim and J. R. Frade, Silica-scavenging effect in zirconia electrolytes: assessment of lanthanum silicate formation, Ionics, 2006, vol. 12(3), pp. 179-184.
  • A.V. Kovalevsky, V.V. Kharton, F. Maxim, A.L. Shaula and J.R. Frade, Processing and characterization of La0.5Sr0.5FeO3-supported Sr1-xFe(Al)O3-SrAl2O4 composite membranes, Journal of Membrane Science, 2006, vol. 278 (1-2), pp. 162-172.
  • A.V. Kovalevsky, D.V. Sviridov, V.V. Kharton, E.N. Naumovich and J.R. Frade, Oxygen evolution on perovskite-type cobaltite anodes: an assessment of materials science-related aspects, Materials Science Forum, 2006, vol. 514-516, pp. 377-381.
  • V.V. Kharton, A.P. Viskup, A.V. Kovalevsky, A.L. Shaula, J.R. Frade and F.M.B. Marques, Mixed conductivity of Ce- and Nb-substituted (La,Sr)FeO3-dMaterials Science Forum, 2006, vol. 514-516, pp. 402-406.
  • V.V. Kharton, A.V. Kovalevsky, A.A. Yaremchenko, F.M.M. Snijkers, J.F.C. Cooymans, J.J. Luyten, A.A. Markov, J.R. Frade and F.M.B. Marques, Oxygen transport and thermomechanical properties of SrFe(Al)O3-δ-SrAl2O4 composites: microstructural effects, Journal of Solid State Electrochemistry, 2006, vol. 10(8), pp. 663-673.
  • A.A. Yaremchenko, V.V. Kharton, A.A. Valente, E.V. Frolova, M.I. Ivanovskaya, A.V. Kovalevsky, F.M.B. Marques and  J. Rocha, Methane oxidation over nanocrystalline Ce0.45Zr0.45La0.10O2-d/Pt and Ce0.9Sm0.1O2-d/Pt anodes, Cat. Lett., 2006, vol. 112 (1-2), pp. 19-26.
  • F.M.B. Marques, V.V. Kharton, E.N. Naumovich, A.L. Shaula, A.V. Kovalevsky, A.A. Yaremchenko, Oxygen ion conductors for fuel cells and membranes: selected developments, Solid State Ionics, 2006, vol. 177 (19-25), pp. 1697-1703.
  • S.O. Yakovlev, V.V. Kharton, E.N. Naumovich, J. Zekonyte, V. Zaporojtchenko, A.V. Kovalevsky, A.A. Yaremchenko and  J.R. Frade, Defect formation and transport in La0.95Ni0.5Ti0.5O3-d, Solid State Sciences, 2006, vol. 8 (11), pp. 1302-1311.
  • A.L. Shaula, V.V Kharton, F.M.B. Marques, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, Oxygen permeability of mixed-conducting composite membranes: effects of phase interaction, Journal of Solid State Electrochemistry, 2006, vol. 10 (1), pp. 28-40.
  • A.A. Yaremchenko, V.V. Kharton, E.N. Naumovich, D.I. Shestakov, V.F. Chukharev, A.V. Kovalevsky, A.L. Shaula, J.R. Frade and F.M.B. Marques, Mixed conductivity, stability and thermomechanical properties of Ni-doped La(Ga,Mg)O3-dSolid State Ionics, 2006, vol. 177 (5-6), pp. 549-558.

2004

  • J.R. Frade, V.V.Kharton, A.A. Yaremchenko, E.V. Tsipis, A.L. Shaula, E.N. Naumovich, A.V. Kovalevsky, F.M.B. Marques, Mixed conducting materials for partial oxidation of hydrocarbons, Boletin de la Sociedad Espanola de Ceramica y Vidrio, 2004, vol. 43, pp.640-643.
  • A.A. Yaremchenko, A.L. Shaula, V.V. Kharton, A.V. Kovalevsky, E.N. Naumovich, J.R. Frade and F.M.B.Marques, Oxygen permeability of transition metal-containing La(Sr,Pr)Ga(Mg)O3-d ceramic membranes, Boletin de la Sociedad Espanola de Ceramica y Vidrio, 2004, vol. 43, pp. 769-774.
  • A.L. Shaula, V.V. Kharton, F.M.B. Marques, A.V. Kovalevsky, A.P. Viskup and E.N. Naumovich, Phase interaction and oxygen transport in oxide composite materials, British Ceramic Transactions, 2004, vol. 103, pp. 211-218.

2003

  • V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, A.L. Shaula, F.M. Figueiredo, E.N. Naumovich, F.M.B. Marques. Oxygen transport in Ce0.8Gd0.2O2-d -based composite membranes, Solid State Ionics 160, 2003, pp. 247-258.
  • A.L. Shaula, A.A. Yaremchenko, V.V. Kharton, D.I. Logvinovich, E.N. Naumovich, A.V. Kovalevsky, J.R. Frade and F.M.B. Marques, Oxygen permeability of LaGaO3-based ceramic membranes, Journal of Membrane Science, 2003, vol. 221, pp.69-77.
  • A.A. Yaremchenko, A.L. Shaula, D.I. Logvinovich, V.V. Kharton, A.V. Kovalevsky, E.N. Naumovich, J.R. Frade, F.M.B. Marques, Oxygen-ionic conductivity of perovskite-type La1-xSrxGa1-yMgyM0.20O3-d (M=Fe, Co, Ni), Materials Chemistry and Physics 82, 2003, pp. 684-690.
  • V.V.Kharton, A.V. Kovalevsky, E.V.Tsipis, A.P.Viskup, E.N.Naumovich, J.R.Jurado and J.R.Frade, Mixed conductivity and stability of A-site-deficient Sr(Fe,Ti)O3-d perovskites, Journal of Solid State Electrochemistry, 2003, vol.7, pp.30-36.

2002

  • V.V.Kharton, A.V. Kovalevsky, A.A.Yaremchenko, F.M.Figueiredo, E.N.Naumovich, A.L.Shaulo and F.M.B.Marques, Surface modification of La0.3Sr0.7CoO3-d ceramic membranes, Journal of Membrane Science, 2002, vol.195, pp.277-287.
  • V.N. Tikhonovich, E.N.Naumovich, V.V.Kharton, A.A.Yaremchenko, A.V. Kovalevsky and A.A. Vecher, Oxygen nonstoichiometry of Bi2V0.9Cu0.1O5.5-d solid electrolyte by coulometric titration technique, Electrochimica Acta, 2002, vol. 47, pp. 3957-3964.
  • A.A.Yaremchenko, M.Avdeev, V.V.Kharton, A.V. Kovalevsky, E.N.Naumovich and F.M.B.Marques, Structure and electronic conductivity of Bi2-xLaxV0.9Cu0.1O5.5-dMaterials Chemistry and Physics, 2002, vol.77, pp.552-558.
  • V.V. Kharton, A.A. Yaremchenko, A.P. Viskup, F.M. Figueiredo, A.L. Shaulo, A.V. Kovalevsky, E.N. Naumovich and F.M.B. Marques, p-type electronic conduction in CeO2- and LaGaO3-based solid electrolytes, Ionics, 2002, vol. 8, pp. 215-222.

2001

  • V.V.Kharton, A.V. Kovalevsky, A.P.Viskup, J.R.Jurado, F.M.Figueiredo, E.N.Naumovich and J.R.Frade, Transport properties and thermal expansion of Sr0.97Ti1-xFexO3-d (x= 0.2-0.8), Journal of Solid State Chemistry, 2001, vol. 156, pp.437-444.
  • V.V.Kharton, F.M.Figueiredo, L.Navarro, E.N.Naumovich, A.V. Kovalevsky, A.A.Yaremchenko, A.P.Viskup, A.Carneiro, F.M.B.Marques anJ.R.Frade, Ceria-based materials for solid oxide fuel cells, Journal of Materials Science, 2001, vol. 36, pp. 1105-1117.
  • V.V.Kharton, A.V. Kovalevsky, A.P.Viskup, F.M.Figueiredo, A.A.Yaremchenko, E.N.Naumovich and F.M.B.Marques, Oxygen permeability and Faradaic efficiency of Ce0.8Gd0.2O2-d - La0.7Sr0.3MnO3-d composites, Journal of the European Ceramic Society, 2001, vol. 21, pp. 1763-1767.
  • D.P. Fagg, V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich and J.R. Frade, The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials, Journal of the European Ceramic Society, 2001, vol. 21, pp. 1831-1835.
  • V.V.Kharton, F.M.Figueiredo, A.V.Kovalevsky, A.P.Viskup, E.N.Naumovich, A.A.Yaremchenko, I.A.Bashmakov and F.M.B.Marques, Processing, microstructure and properties of LaCoO3-d ceramics, Journal of the European Ceramic Society, 2001, vol. 21, pp. 2301-2309.
  • V.V.Kharton, A.P.Viskup, A.V.Kovalevsky, E.N.Naumovich and F.M.B.Marques, Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4-type structure, Solid State Ionics, 2001, vol. 143, pp. 337-353.

2000

  • V.V.Kharton, A.V. Kovalevsky, A.P.Viskup, F.M.Figueiredo, A.A.Yaremchenko, E.N.Naumovich and F.M.B.Marques, Oxygen permeability of Ce0.8Gd0.2O2-d - La0.7Sr0.3MnO3-d composite membranes, Journal of the Electrochemical Society, 2000, vol.147, pp.2814-2821.
  • V.V.Kharton, A.P.Viskup, A.V. Kovalevsky, F.M.Figueiredo, J.R.Jurado, A.A.Yaremchenko,  E.N.Naumovich and J.R.Frade,  Surface-limited ionic transport in perovskites Sr0.97(Ti,Fe,Mg)O3-dJournal of Materials Chemistry, 2000, vol.10, pp. 1161-1169.
  • V.V.Kharton, A.V. Kovalevsky, A.P.Viskup, F.M.Figueiredo, J.R.Frade, A.A.Yaremchenko and E.N.Naumovich, Faradaic efficiency and oxygen permeability of Sr0.97Ti0.60Fe0.40O3-d perovskite, Solid State Ionics, 2000, vol.128, pp. 117-130.
  • V.V.Kharton, A.P.Viskup, A.V. Kovalevsky, J.R.Jurado, E.N.Naumovich, A.A.Vecher and J.R.Frade, Oxygen ionic conductivity of Ti-containing strontium ferrite, Solid State Ionics, 2000, vol.133, pp.57-65.
  • V.V.Kharton, E.N.Naumovich, A.V. Kovalevsky, A.P.Viskup, F.M.Figueiredo, I.A.Bashmakov and F.M.B.Marques, Mixed electronic and ionic conductivity of LaCo(M)O3 (M= Ga, Cr, Fe or Ni). IV. Effect of preparation method on oxygen transport in LaCoO3-dSolid State Ionics, 2000, vol. 138, pp.135-148.
  • A.A.Yaremchenko, V.V.Kharton, A.V. Kovalevsky, N.M.Lapchuk and E.N.Naumovich, EPR spectra and electrical conductivity of perovskite-like BaBi1-xLnxO3-d , Materials Chemistry and Physics, 2000, vol.63, pp.240-250.
  • V.V.Kharton, F.M.Figueiredo, A.V. Kovalevsky, A.P.Viskup, E.N.Naumovich, J.R.Jurado and J.R.Frade, Oxygen diffusion in, and thermal expansion of, SrTiO3-d- and CaTiO3-d-based materials, Defect and Diffusion Forum, 2000, vol.186-187, pp.119-136.

1999

  • V.V.Kharton, A.A.Yaremchenko, A.V. Kovalevsky, A.P.Viskup, E.N.Naumovich and P.F.Kerko, Perovskite-type oxides for high-temperature oxygen separation membranes, Journal of Membrane Science, 1999, vol.163, pp.307-317.
  • V.V.Kharton, E.N.Naumovich, V.N.Tikhonovich, I.A.Bashmakov, L.S.Boginsky and A.V.Kovalevsky, Testing tubular solid oxide fuel cells in nonsteady-state conditions, Journal of Power Sources, 1999, vol.77, pp.242-249.
  • D.M.Bochkov, V.V.Kharton, A.V. Kovalevsky, A.P.Viskup and E.N.Naumovich, Oxygen permeability of La2Cu(Co)O4+d solid solutions, Solid State Ionics, 1999, vol. 120, pp.281-288.
  • V.V.Kharton, A.P.Viskup, A.A. Yaremchenko, P.F.Kerko, E.N.Naumovich and A.V. Kovalevsky, Ionic transport in SrCo0.85Ti0.15O3-d ceramics at high oxygen pressures, Materials Research Bulletin, 1999, vol.34, pp.1921-1928.
  • A.V. Kovalevsky, V.V.Kharton and E.N.Naumovich, Oxygen ion conductivity of hexagonal La2W1.25O6.75Materials Letters, 1999, vol.38, pp.300-304.

1998

  • V.V.Kharton, V.N.Tikhonovich, Li Shuangbao, E.N.Naumovich, A.V. Kovalevsky, A.P.Viskup, I.A.Bashmakov and A.A.Yaremchenko, Ceramic microstructure and oxygen permeability of SrCo(Fe,M)O3-d (M= Cu or Cr) perovskite membranes, Journal of the Electrochemical Society, 1998, vol.145, pp.1363-1374.
  • A. V. Kovalevsky, V. V. Kharton, V. N. Tikhonovich, E. N. Naumovich, A. A. Tonoyan, O. P. Reut and L. S. Boginsky, Oxygen permeation through Sr(Ln)CoO3−δ (Ln=La, Nd, Sm, Gd) ceramic membranes, Materials Science and Eng. B, 1998, vol. 52, pp. 105-116.
  • V.V.Kharton, A.V. Kovalevsky, V.N.Tikhonovich, E.N.Naumovich and A.P.Viskup, Mixed electronic and ionic conductivity of LaCo(M)O3 (M= Ga, Cr, Fe or Ni). II. Oxygen permeation through Cr- and Ni-substituted LaCoO3Solid State Ionics, 1998, vol. 110, pp.53-60.
  • V.V.Kharton, Li Shuangbao, A.V. Kovalevsky, A.P.Viskup, E.N.Naumovich and A.A.Tonoyan, Oxygen permeability and thermal expansion of SrCo(Ti)O3-d perovskites, Materials Chemistry and Physics, 1998, vol.53, pp.6-12.

1997

  • V.V.Kharton, Li Shuangbao, A.V. Kovalevsky and E.N.Naumovich, Oxygen permeability of perovskites in the system SrCoO3-d - SrTiO3Solid State Ionics, 1997, vol.96, pp.141-152.
  • E.N.Naumovich, V.V.Kharton, V.V.Samokhval and A.V. Kovalevsky, Oxygen separation using Bi2O3-based solid electrolytes, Solid State Ionics, 1997, vol.93, pp.95-103.
  • A.V. Kovalevsky, V.V. Kharton, E.N. Naumovich, Oxygen–ionic permeability of the Sr0.7Ln0.3CoO3–d (Ln = La, Nd, Sm, Gd) solid solutions with the perovskite structure, Russian Journal of Electrochemistry, 1997, vol. 33(2), pp. 170-174.

1996

  • A.V. Kovalevsky, V.V.Kharton and E.N.Naumovich, Ionic and electronic conductivity of Ce(Gd,Co)O2 ceramics, Inorganic Materials, 1996, vol. 32, pp.1230-1233.

Proceedings of international conferences:

  • C. Buysse, A. Kovalevsky, A. Buekenhoudt, F. Snijkers, S. Mullens, J. Luyten, Development and performance of BSCF capillaries for high temperature oxygen separation from air, Proc. 20th Annual Meeting of the North American Membrane Society and 11th International Conference on Inorganic Membranes, 2010, pp. 297-298.
  • V.V. Kharton, A.A. Yaremchenko, A.P. Viskup, F.M. Figueiredo, A.V. Kovalevsky, E.N. Naumovich and F.M.B. Marques, Role of grain boundaries in oxygen ionic transport in mixed-conducting ceramics. In: "Grain Boundary Engineering of Electronic Ceramics", Eds. R. Freer, J. Van Herle, J. Petzelt and C. Leach, British Ceramic Proceedings, No 63. Maney Publ., Leeds, 2003, pp. 27-36.
  • A.V. Kovalevsky, V.V.Kharton, A.P.Viskup, P.F.Kerko, E.N.Naumovich and A.A.Vecher, Oxygen permeability of oxide materials at high oxygen partial pressures, In: Proc. 5th International Meeting “Basic Problems of Solid State Ionics” (Chernogolovka, Russia, 11-13.5.2000), Eds. A.E.Ukshe, N.G.Bukun, A.M.Mikhailova, Institute of Chemical Physics of RAS, Chernogolovka, 2000, pp.48-52 [in Russian].
  • E.N.Naumovich, V.V.Kharton, A.V.Kovalevsky and V.V.Samokhval, Fluorite-like mixed conductors in the systems Bi(Y,M)O1.5±d (M= Pr, Co) and Ce(Gd,Me)O2-d (Me= Co, Mn), in: “Ionic and Mixed Conducting Ceramics III”, Proc. 3rd Int.Symp. on Ionic and Mixed Conducting Ceramics, Eds.T.A.Ramanarayanan, W.L.Worrell, H.L.Tuller, A.C.Krandkar, M.Mogensen and W.Gopel, PV97-24, The Electrochemical Society, Pennington, NJ, 1998, pp.496-508.
  • V.V.Kharton, A.V.Kovalevsky, A.P.Viskup, E.N.Naumovich and O.P.Reut, Oxygen permeation through perovskite-like SrCo(M)O3-d (M= Ti, V, Cr, Fe, Cu) and Sr(Ln)CoO3-d (Ln= La, Nd, Sm, Gd), in: “Ionic and Mixed Conducting Ceramics III”, Proc. 3rd Int.Symp. on Ionic and Mixed Conducting Ceramics, Eds.T.A.Ramanarayanan, W.L.Worrell, H.L.Tuller, A.C.Krandkar, M.Mogensen and W.Gopel, PV97-24, The Electrochemical Society, Pennington, NJ, 1998, pp. 736-750.
  • A.V. Kovalevsky, V.V. Kharton, Li Shuangbao and E.N. Naumovich, Oxygen ion transport in SrTi(Co)O3-d perovskites, Proc.Int.Conf. "Electroceramics-V" (Aveiro, Portugal, 2-4 Sept.1996), pp.199-202.
  • E.N.Naumovich, V.V.Kharton, A.V.Kovalevsky and V.V.Samokhval, Conjugate transport of oxygen ions and electrons in fluorite-type ceramics Ce(Gd,M)O2 (M = Co, Mn), in: "High Temperature Electrochemistry: Ceramics and Metals", Proc. 17th Riso Int. Symp. on Materials Science, Eds.F.Poulsen, N.Bananos, S.Linderoth, M.Mogensen and B.Zachau-Christiansen (Roskilde, Denmark, September 2-6, 1996), pp.375-380.

Other refereed journals

  • A.A.Yaremchenko, V.V.Kharton, A.P.Viskup, A.V.Kovalevsky, E.N.Naumovich and A.A.Vecher, Physicochemical properties of magnesium-doped lanthanum cobaltite, Vestnik BGU (Letters of Belarus State University), seriya 2, 2001, No 1, pp.20-24.

Participation in conferences/meetings/workshops

2019: Organizing Committee, CICECO Jornadas 2019, Aveiro, Portugal.

2014 - Organizing Committee of the 19th Meeting of the Portuguese Electrochemical Society, Aveiro, Portugal.


2017-2020: More than 10 invited/keynote presentations at the international meetings and workshops.

Ongoing Supervisions

Projects

Caracterizacao da conducao termica em nanoescala utilizando metodos de varrimento de sonda para guiar a sintese de ceramicas termoeletricas (NANOCERAMPROBE)

PartnerFundação para a Ciência e a Tecnologia
thermoelectrics; scanning probe microscopy; thermal conduction; microstructure

Cellular oxide catalysts for emission lean combustion in porous media (LEANCOMB)

PartnerFundação para a Ciência e a Tecnologia
cellular ceramics, combustion, catalysts, functionalization

Design de materiais termoeletricos avancados por efeitos redox: Progressos para aplicacoes de alta temperatura . (REMOTE)

PartnerFundação para a Ciência e a Tecnologia

Development of new methodologies for industrial CO2-free steel production by electrowinning (SIDERWIN)

Local CoordinatorEuropean Comission
For the time being, there are no economically feasible steelmaking technologies available having the potential to meet the EU’s climate and energy targets for 2030. At best, a 15% decrease in the overall CO2 intensity of the sector could be achieved throughout the widespread dissemination of technologies that could reasonably become co...

Facing the challenges of characterizing novel thermal materials and processes (Heat@UA) (RECI/CTM-CER/0336/2012)

PartnerFundação para a Ciência e a Tecnologia
Thermal properties of materials Thermal processes Thermometry Nano-scale studies

Novel approach to Power-to-Fuel: comprehensive studies of anodic processes in Direct Carbon Solid Oxide Fuel-assisted Electrolysis Cell (DC-SOFEC)

PartnerOther International

Novel layered ferrits materials with mixed ionic-electronic conductivity for applications in alternative energy sources (PTDC/CTM/64357/2006)

PartnerFundação para a Ciência e a Tecnologia
Mixed conductors Ceramic membranes SOFC electrodes Ionic Transport

Novel molten carbonate/ceramic composite materials for sustainable energy technologies with. CO2 capture and utilization (MOCO3)

PartnerFundação para a Ciência e a Tecnologia
The MOCO3 project focuses on the development of novel composite materials consisting of molten carbonates infiltrated in a solid matrix as functional materials in intermediate temperature fuel cells and CO2 selective membranes. MOCO3 addresses performance and lifetime of these systems by focusing on materials engineering at all length scales (at...

Novos conceitos de catalisadores para oxi-vapor gasificação de biomassa sem alcatrões. (NOTARGAS)

PartnerFundação para a Ciência e a Tecnologia

Produção de hidrogénio verde impulsionada por Mxenes (HydroXen)

CoordinatorOther National
Os objetivos principais do projeto são: - estabelecer novos protocolos para processamento de elétrodos HER impulsionados por MXenes que permitam uma produção em escala baseada num método respeitador do ambiente; - demonstrar os conceitos simples, económicos e escal&aa...

SGH : Smart Green Homes (Smart Green Homes)

PartnerIndustry National
The Smart Green Homes (SGH) Project aims to develop integrated product and technology solutions for the households, raising standards of comfort, safety and user satisfaction to a new level and, at the same time, to respond to the problems of sustainability of the Planet, increasing the energy efficiency and reducing the emission of gaseous poll...

Thermoelectric oxide composites: design through controlled interactions (TEOsINTE)

CoordinatorEuropean Comission
Thermoelectric (TE) materials can convert temperature differences directly into electricity and are nowadays considered as one of the most promising means to produce “green” electricity from the huge amount of various available waste heat sources. TE conversion is intrinsically simple, scalable and reliable, empl...

Towards highly-efficient oxide thermoelectrics by structural and defects engineering (Programme for Cooperation in Science between Portugal and Germany - 441.00)

CoordinatorFundação para a Ciência e a Tecnologia

Unitised regenerative fuel cell for efficient renewable energy supply: from materials to device (SAICTPAC/0032/2015)

PartnerFundação para a Ciência e a Tecnologia
Energia; Hidrogénio; Pilha de combustível; Electrolisador

Zero CO2 emissions: challenge and foresight for innovative multi-ionic functional membranes (CO2zero)

PartnerFundação para a Ciência e a Tecnologia

Publications

Electrochemical reduction of hematite-based ceramics in alkaline medium: Challenges in electrode design

Lopes, DV; Ivanova, YA; Kovalevsky, AV; Sarabando, AR; Frade, JR; Quina, MJ
2019, ELECTROCHIMICA ACTA, 327.
ISBN: 1873-3859

Exploring Tantalum as a Potential Dopant to Promote the Thermoelectric Performance of Zinc Oxide

Arias-Serrano, BI; Xie, WJ; Aguirre, MH; Tobaldi, DM; Sarabando, AR; Rasekh, S; Mikhalev, SM; Frade, JR; Weidenkaff, A; Kovalevsky, AV
2019, MATERIALS, 12, 13.
ISBN: 1996-1944

Improvement of thermoelectric properties of Ca0.9Gd0.1MnO3 by powder engineering through K2CO3 additions

Ferreira, NM; Ferro, MC; Sarabando, AR; Ribeiro, A; Davarpanah, A; Amaral, V; Madre, MA; Kovalevsky, AV; Torres, MA; Costa, FM; Sotelo, A
2019, JOURNAL OF MATERIALS SCIENCE, 54, 4, 3252-3261.
ISBN: 1573-4803

A squeeze on the perovskite structure improves the thermoelectric performance of Europium Calcium Titanates

X. Xiao, M. Widenmeyer, K. Mueller, M. Scavini, S. Checchia, C. Castellano, D. Ma, S. Yoon, W. Xie, U. Starke, K. Zakharchuk, A. Kovalevsky, A. Weidenkaff
2018, MATERIALS TODAY PHYSICS, 7, 96-105.

New environmentally friendly Ba-Fe-O thermoelectric material by flexible laser floating zone processing

Ferreira, NM; Costa, FM; Kovalevsky, AV; Madre, MA; Torres, MA; Diez, JC; Sotelo, A
2018, SCRIPTA MATERIALIA, 145, 54-57.

Unusual redox behaviour of the magnetite/hematite core-shell structures processed by the laser floating zone method

Ferreira, NM; Ferro, MC; Valente, MA; Frade, JR; Costa, FM; Kovalevsky, AV
2018, DALTON TRANSACTIONS, 47, 16, 5646-5651.

Design of aluminamonoliths by emulsion-gel casting: Understanding the monolith structure from a rheological approach

Nayak, N; Vitorino, N; Frade, JR; Kovalevsky, AV; Alves, VD; Crespo, JG; Portugal, CAM
2018, MATERIALS & DESIGN, 157, 119-129.

Processing of highly-porous cellular iron oxide-based ceramics by emulsification of ceramic suspensions

Lopes, DV; Kovalevsky, AV; Quina, MJ; Frade, JR
2018, CERAMICS INTERNATIONAL, 44, 16, 20354-20360.

Solid solution limits and electrical properties of scheelite SryLa1-yNb1-xVxO4-delta materials for x=0.25 and 0.30 as potential proton conducting ceramic electrolytes

Brandao, AD; Nasani, N; Yaremchenko, AA; Kovalevsky, AV; Fagg, DP
2018, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 43, 40, 18682-18690.

A self-forming nanocomposite concept for ZnO-based thermoelectrics

Zakharchuk, KV; Widenmeyer, M; Alikin, DO; Xie, WJ; Populoh, S; Mikhalev, SM; Tselev, A; Frade, JR; Weidenkaff, A; Kovalevsky, AV
2018, JOURNAL OF MATERIALS CHEMISTRY A, 6, 27, 13386-13396.

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".