authors |
Narendar, N; Kovalevsky, AV; Xie, WJ; Rasekh, S; Constantinescu, G; Weidenkaff, A; Pukazhselvan, D; Fagg, DP |
nationality |
International |
journal |
JOURNAL OF PHYSICAL CHEMISTRY C |
keywords |
DEFECT CHEMISTRY; OXIDE; CA3CO4O9; ENHANCEMENT; POWER; GLASS |
abstract |
Ecobenign and high-temperature-stable oxides are considered a promising alternative to traditional Bi2Te3-, Bi2Se3-, and PbTe-based thermoelectric materials. The quest for highperforming thermoelectric oxides is still open and, among other challenges, includes the screening of various materials systems for potentially promising electrical and thermal transport properties. In this work, a new family of acceptor-substituted Haldane gap 1D BaGd2CoO5 dense ceramic materials was characterized in this respect. The substitution of this material with calcium results in a general improvement of the electrical performance, contributed by an interplay between the charge carrier concentration and their mobility. Nevertheless, a relatively low electrical conductivity was measured, reaching similar to 5 S/cm at 1175 K, resulting in a maximum power factor of similar to 25 mu W/(K x m(2)) at 1173 K for BaGd1.80Ca0.20CoO5. On the other hand, the unique anisotropic 1D structure of the prepared materials promotes efficient phonon scattering, leading to low thermal conductivities, rarely observed in oxide electroceramics. While the BaGd2-xCaxCoO5 materials show attractive Seebeck coefficient values in the range 210-440 mu V/K, the resulting dimensionless figure of merit is still relatively low, reaching similar to 0.02 at 1173 K. The substituted BaGd2-xCaxCoO5 ceramics show comparable thermoelectric performance in both inert and air atmospheres. These features highlight the potential relevance of this structure type for thermoelectric applications, with future emphasis placed on methods to improve conductivity. |
publisher |
AMER CHEMICAL SOC |
issn |
1932-7447 |
isbn |
1932-7455 |
year published |
2020 |
volume |
124 |
issue |
24 |
beginning page |
13017 |
ending page |
13025 |
digital object identifier (doi) |
10.1021/acs.jpcc.0c03149 |
web of science category |
Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary |
subject category |
Chemistry; Science & Technology - Other Topics; Materials Science |
unique article identifier |
WOS:000549942500015
|
ciceco authors
impact metrics
journal analysis (jcr 2019):
|
journal impact factor |
4.189 |
5 year journal impact factor |
4.404 |
category normalized journal impact factor percentile |
64.576 |
dimensions (citation analysis):
|
|
altmetrics (social interaction):
|
|
|