authors |
N.Balke, A.Tselev |
editors |
Nini Pryds, Vincenzo Esposito |
chapter title |
Functional material properties of oxide thin films probed by atomic force microscopy on the nanoscale |
nationality |
International |
abstract |
Atomic force microscopy (AFM) is a highly versatile tool to study material functionality on the nanoscale. When use in contact mode, different material properties can be probed and imaged directly from the material response to an external stimulus. Most prevalent are the ones based on electromechanical phenomena, for example, piezoelectricity. Despite recent technical advances in AFM techniques, the quantification of functional material parameters based on electromechanical phenomena is still elusive. Only if quantitative material parameters can be extracted, can a correlation of nanoscale structure-function relationships be derived. This development would also benefit the integration of AFM-based techniques with techniques probing smaller or larger length and time scales as well as theoretical efforts for a full information integration across different disciplines. In this chapter, different approaches to quantify electromechanical sample responses and extract quantitative material properties through a fundamental understanding of cantilever dynamics and signal contributions of various electromechanical phenomena. |
publisher |
Elsevier |
isbn |
978-0-12-811166-6 |
year published |
2018 |
beginning page |
181 |
ending page |
201 |
book digital object identifier (doi) |
10.1016/B978-0-12-811166-6.00008-X |
ciceco authors
impact metrics
dimensions (citation analysis):
|
|
altmetrics (social interaction):
|
|