abstract
Twenty one years ago, the discovery of the giant magnetocaloric effect (GMCE) at room temperature completely revolutionized the magnetocaloric materials field demonstrating the potential of magnetic refrigeration at room temperature and setting the beginning of a race for the best magnetocaloric material. Since then, hundreds of different bulk magnetic materials were studied in detail; however, only a small set of these exhibit GMCE. In the last ten years, the broad interest on these materials leads to the extension of their study to the micro- and nanoscale. In this review, we highlight the main motivations for exploring the size-reduction both from the technological and the purely scientific point of view and stress the general consequences on the magnetic and magnetocaloric properties. The emergence of different underlying mechanisms driving these effects will be identified with particular emphasis for the set of materials presenting GMCE.
keywords
MAGNETIC PHASE-TRANSITION; HYDROGEN EVOLUTION REACTION; FIELD-INDUCED STRAINS; THIN-FILMS; MARTENSITIC-TRANSFORMATION; ENTROPY CHANGE; MAGNETOSTRUCTURAL TRANSITION; REFRIGERATION; GD; MAGNETORESISTANCE
subject category
Materials Science
authors
Belo, JH; Pires, AL; Araujo, JP; Pereira, AM
our authors
Groups
Projects
acknowledgements
The authors acknowledge Fundacao para a Ciencia e a Tecnologia for financial support through the projects: CERN/FIS-NUC/0004/2015, EXPL/EMS-ENE/2315/2013, and FEDER/POCTIn0155/94. J.H. Belo thanks FCT for the Grant SFRH/BD/88440/2012 and CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID /CTM /50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. A.M. Pereira acknowledges the project NORTE-070124-FEDER-000070 for financial support.