Quality criteria for phase change materials selection

resumo

Selection guidelines are primary criterion for optimization of materials for specific applications in order to meet simultaneous and often conflicting requirements. This is mostly true for technologies and products required to meet the main societal needs, such as energy. In this case, gaps between supply and demand require strategies for energy conversion and storage, including thermal storage mostly based on phase change materials. Latent heat storage is also very versatile for thermal management and thermal control by allowing high storage density within narrow temperature ranges without strict dependence between stored thermal energy and temperature. Thus, this work addressed the main issues of latent heat storage from a materials selection perspective, based on expected requirements of applications in thermal energy storage or thermal regulation. Representative solutions for the kinetics of latent heat charge/discharge were used to derive optimization guidelines for high energy density, high power, response time (from fast response to thermal inertia), etc. The corresponding property relations were presented in graphical forms for a wide variety of prospective phase change materials, and for wide ranges of operating conditions, and accounting for changes in geometry and mechanisms. (C) 2016 Elsevier Ltd. All rights reserved.

palavras-chave

THERMAL-ENERGY STORAGE; THERMOPHYSICAL PROPERTIES; CONDUCTIVITY ENHANCEMENT; HEAT; PCM; PERFORMANCE; WATER; COMPOSITES; MANAGEMENT; SYSTEMS

categoria

Thermodynamics; Energy & Fuels; Mechanics

autores

Vitorino, N; Abrantes, JCC; Frade, JR

nossos autores

agradecimentos

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013, PTDC/CTM-ENE/2073/2012 and Grant SFRH/BPD/99367/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".