Exploring the High-Temperature Electrical Performance of Ca3-xLaxCo4O9 Thermoelectric Ceramics for Moderate and Low Substitution Levels

resumo

Aliovalent substitutions in Ca3Co4O9 often result in complex effects on the electrical properties and the solubility, and impact of the substituting cation also depends largely on the preparation and processing method. It is also well-known that the monoclinic symmetry of this material's composite crystal structure allows for a significant hole transfer from the rock salt-type Ca2CoO3 buffer layers to the hexagonal CoO2 ones, increasing the concentration of holes and breaking the electron-hole symmetry from the latter layers. This work explored the relevant effects of relatively low La-for-Ca substitutions, for samples prepared and processed through a conventional ceramic route, chosen for its simplicity. The obtained results show that the actual substitution level does not exceed 0.03 (x < 0.03) in Ca3-xLaxCo4O9 samples with x = 0.01, 0.03, 0.05 and 0.07 and that further introduction of lanthanum results in simultaneous Ca3Co4O9 phase decomposition and secondary Ca3Co2O6 and (La,Ca)CoO3 phase formation. The microstructural effects promoted by this phase evolution have a moderate influence on the electronic transport. The electrical measurements and determined average oxidation state of cobalt at room temperature suggest that the present La substitutions might only have a minor effect on the concentration of charge carriers and/or their mobility. The electrical resistivity values of the Ca3-xLaxCo4O9 samples with x = 0.01, 0.03 and 0.05 were found to be similar to 1.3 times (or 24%) lower (considering mean values) than those measured for the pristine Ca3Co4O9 samples, while the changes in Seebeck coefficient values were only moderate. The highest power factor value calculated for Ca-2.La-99(0).01Co4O9 (similar to 0.28 mW/K(2)m at 800 degrees C) is among the best found in the literature for similar materials. The obtained results suggest that low rare-earth substitutions in the rock salt-type layers can be a promising pathway in designing and improving these p-type thermoelectric oxides, provided by the strong interplay between the mobility of charge carriers and their concentration, capable of breaking the electron-hole symmetry from the conductive layers.

palavras-chave

TRANSPORT-PROPERTIES; PHASE-EQUILIBRIA; SIGNIFICANT ENHANCEMENT; CRYSTAL-STRUCTURE; AG ADDITION; CA3CO4O9; CO; COBALTITE; OXIDE; POWER

categoria

Multidisciplinary Sciences

autores

Constantinescu, G; Rasekh, S; Amirkhizi, P; Lopes, DV; Vieira, MA; Kovalevsky, AV; Diez, JC; Sotelo, A; Madre, MA; Torres, MA

nossos autores

agradecimentos

This project has received funding from the European Union's Horizon 2020 research and innovation programme

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".