Mechanical and thermal properties of metallic and semiconductive nanostructures

resumo

Using a top-down approach, we report a theoretical investigation of the melting temperature at the nanoscale, T-m for different shapes of "free-standing" nanostructures. To easily calculate the nanoscale melting temperature for a wide range of metals and semiconductors, a convenient shape parameter called alpha(shape) is defined. Considering this parameter, we argue why smaller size effects are observed in high bulk melting temperature materials. Using T-m, a phase transition stress model is proposed to evaluate the intrinsic strain and stress during the first steps of solidification. Then, the size effect on the Thornton & Hoffman's criterion at the nanoscale is discussed and the intrinsic residual stress determination in nanostructures is found to be essential for sizes below 100 nm. Furthermore, the inverse Hall-Petch effect, for sizes below similar to 15 nm, can be understood by this model. Finally, the residual strain in hexagonal zinc oxide nanowires is calculated as a function of the wire dimensions.

palavras-chave

THIN-FILMS; MELTING TEMPERATURE; THERMODYNAMIC ANALYSIS; INTRINSIC STRESSES; SIZE DEPENDENCE; PHASE-STABILITY; SMALL PARTICLES; SURFACE-ENERGY; GRAIN-GROWTH; SHAPE

categoria

Chemistry; Science & Technology - Other Topics; Materials Science

autores

Guisbiers, G; Kazan, M; Van Overschelde, O; Wautelet, M; Pereira, S

nossos autores

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".