Chapter 281 – Lanthanides in Luminescent Thermometry


Luminescent ratiometric thermometers combining high spatial and temporal resolution at the micro- and nanoscale, where the conventional methods are ineffective, have emerged over the last decade as an effervescent field of research, essentially motivated by their potential applications in nanotechnology, photonics, and biomedicine. Among the distinct luminescent thermal probes, lanthanide-based materials play a central role in the field due to their unique thermometric response and intriguing emission features (eg, high quantum yield, narrow bandwidth, long-lived emission, large Stokes shifts, and ligand-dependent luminescence sensitization). This chapter offers a general overview of recent examples of single- and dual-center Ln3 +-based thermometers, emphasizing those working at nanometric scale, being focused on how to quantify their performance accordingly to the relevant parameters: relative sensitivity, temperature uncertainty, spatial and temporal resolution, repeatability (or test–retest reliability), and reproducibility. The emission mechanisms supporting single- and dual-center emissions are reviewed, together with the advantages and limitations of each approach. Illustrative examples of the rich variety of systems designed and developed to sense temperature are provided and explored. Finally, we discuss the challenges and opportunities in the development of highly sensitive luminescent ratiometric thermometers that are currently facing the scientists in this exciting research field.


C.D.S. Brites, A. Millán, L.D. Carlos

nossos autores


Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".