abstract
The order of the salting-in or salting-out inducing ability of ions on the aqueous solubility of macromolecules in aqueous solutions is known as the Hofmeister series. Taking into account that ionic liquids (ILs) are constituted by ions, they can exert similar effects on the solubility of other ILs in aqueous media. To expand the knowledge of the salting-in/-out ability of ILs, experimental studies on the solubility of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonylimide) in water and in the presence of other IL/salts, were conducted at 298.15K and atmospheric pressure. Both the impact of the anion and cation of the IL were evaluated with the following ILs/salts: 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium hydrogensulfate, cholinium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and lithium bis(trifluoromethylsulfonyl)imide, over a wide composition range. As happens with common salts, both salting-in and salting-out effects exerted by ILs were observed, with a higher impact exerted by the IL anion on the salting-out phenomenon. These data allow better understanding of the ILs impact when designing liquid-liquid separation processes. [GRAPHICS] .
keywords
MUTUAL SOLUBILITIES; HOFMEISTER SERIES; BIPHASIC SYSTEMS; WATER; EXTRACTION; SEPARATION; SOLVENTS; COBALT; IMPACT
subject category
Chemistry
authors
Neves, CMSS; Dinis, TBV; Carvalho, PJ; Schroder, B; Santos, LMNBF; Freire, MG; Coutinho, JAP
our authors
Groups
G4 - Renewable Materials and Circular Economy
G5 - Biomimetic, Biological and Living Materials
Projects
CICECO - Aveiro Institute of Materials (UID/CTM/50011/2013)
Projeto de Investigação Exploratória: Pedro Carvalho (IF/00758/2015)
Igy Technology: A Purication Platform using Ionic-Liquid-Based Aqueous Biphasic Systems (IGYPURTECH)
acknowledgements
This work was developed in the scope of the projects CICECO-Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. Catarina M. S. S. Neves and Teresa B. V. Dinis also acknowledge FCT for their grants (SFRH/BPD/109057/2015 and SFRH/BD/130958/2017, respectively). P. J. Carvalho acknowledges FCT for a contract under the Investigador FCT 2015, Contract No. IF/00758/2015. The research leading to reported results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 337753.