Tetraalkylammonium Chlorides as Melting Point Depressants of Ionic Liquids

abstract

With the (re)advent of eutectic mixtures within the field of deep eutectic solvents, special attention has been given to the measurement of solid-liquid equilibrium (SLE) phase diagrams, supported by the relevant information they can provide on the molecular interactions and melting temperature depression of any given system. As such, this work investigates the SLE phase diagrams of mixtures between ionic liquids and tetraalkylammonium chlorides (methyl, ethyl, and propyl), with the goal of decreasing the melting temperature of ionic liquids and ammonium salts, thus, expanding their application scope. Results show that tetraalkylammonium salts exhibit negative deviations from thermodynamic ideality when mixed with ionic liquids, which are increased by increasing their alkyl chain length and are interpreted in terms of anion exchange mechanisms. In turn, this nonideality contributes greatly to depression of the melting point of the ionic liquids examined. Overall, this work demonstrates that the correct combination of tetraalkylammonium/ILs anions and cations can lead to significant melting point depressions in both species, thus creating new ionic liquid mixtures using an approach akin to that used to form deep eutectic solvents.

keywords

EUTECTIC SOLVENTS; CHOLINIUM; MIXTURES

subject category

Chemistry

authors

Martins, MAR; Abranches, DO; Silva, LP; Pinho, SP; Coutinho, JAP

our authors

acknowledgements

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020 and LA/P/0006/2020, and CIMO (UIDB/00690/2020 and UIDP/00690/2020) and SusTEC (LA/P/0007/2021), financed by national funds through the FCT/MEC (PIDDAC). L.P.S. acknowledges FCT for her Ph.D. Grant (SFRH/BD/135976/2018).

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".