Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanised steel substrates


Galvanised steel substrates were pre-treated in bis-1,2-[triethoxysilyilpropyl]tetrasulphide silane solutions containing SiO2 or CeO2 nanoparticles activated with cerium ions. The surface composition was investigated by infrared spectroscopy. The film thickness was determined by scanning electron microscopy. The results showed that the barrier properties of silane films modified with nanoparticles depend upon the concentration of nanoparticles. The results also showed that the silane film thickness increases when the nanoparticles are activated with cerium ions. The anti-corrosion behaviour of the cerium activated nanoparticles was also investigated at the microscale level, in artificial induced defects, using the scanning vibrating electrode technique (SVET). The substrates treated with the silane coating modified with CeO2 nanoparticles revealed improved corrosion behaviour comparatively to the coatings modified with SiO2 nanoparticles. X-ray photoelectron spectroscopy and Auger electron spectroscopy experiments carried out on the defects after immersion in NaCl solutions revealed the presence of a surface film containing zinc corrosion products and cerium/ceria compounds. (C) 2007 Elsevier B.V. All rights reserved.



subject category

Chemistry; Materials Science


Montemor, MF; Ferreira, MGS

our authors

Share this project:

Related Publications

We use cookies for marketing activities and to offer you a better experience. By clicking “Accept Cookies” you agree with our cookie policy. Read about how we use cookies by clicking "Privacy and Cookie Policy".