Characterization and Synthesis of Silver Nanostructures in Rare Earth Activated GeO2-PbO Glass Matrix Using Matrix Adjustment Thermal Reduction Method


This paper reports matrix adjustment thermal reduction method to synthesize silver nanostructures in Er3+/Yb3+ activated GeO2-PbO glass matrix. The GeO2-PbO glass, the medium of nanoparticle formation, doped with Er2O3, Yb2O3 and AgNO3 was prepared by a melt quenching method. Annealing of the glass for different times was utilized, not only due to thermally reduce Ag+ ions to Ag nanostructures, but also to influence the glassy network. This is because, the glass structural transformation temperature is near to 435 degrees C and heating at more than this temperature can cause some structural changes in the glass matrix. According to TEM images, samples that tolerate 450 degrees C annealing temperature for one hour show the formation of basil-like silver nanostructures with a mean length of 54 nm and mean diameter of 13 nm embedded in the glass matrix, whereas with annealing at 450 degrees C for 5 to 20 h, silver nanoparticles of about 3-4 nm mean diameter size are formed. Annealing for 30 h causes silver nanoparticles to aggregate to form larger particles due to an Oswald ripening process. Observation of the characteristic Ag-NP SPR band at 400-500 nm in the UV-visible absorption spectra confirms the existence of silvernanoparticles. The SPR band widens to longer wavelengths in one hour annealed samples, which relates to the existence of nanostructures with different size or fractal shapes. In addition, an increment in the peak of the SPR band by increasing the duration of annealing indicates the formation of more nanoparticles. Furthermore, the existence of a peak at 470 cm(-1) in the FTIR spectra of annealed samples and its absence in the samples not exposed to an annealing process suggests that the glass matrix is polymerized by Pb-O chains during the 450 degrees C annealing process. This is the main source of different nanostructures because of the dissimilar stabilizing media. The tighter media cap the particles to form small and dense nanoparticles but a loose environment leads to the creation of basil-like particles in the glass matrix.






Bahari, HR; Zamiri, R; Sidek, HAA; Zakaria, A; Adikan, FRM

nossos autores



The financial support from Universiti Putra Malaysia (UPM) and the Institute of Bioscience (IBS) Zahidah Muhamed for TEM and EDX services, and Center for Research Instrumentation and Management (CRIM) for XPS services are gratefully acknowledged.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".