Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions

resumo

Magnetic materials can be easily separated from reaction media by application of an external magnetic field. On the other hand, nanomaterials are innovative platforms which present high surface-to-volume ratio allowing low mass transfer limitations. Magnetic nanoparticles (MNPs) can be considered as supports for catalysts immobilization since they greatly improve their reutilization avoiding the need of energy and time consuming centrifugation steps. Enzyme immobilization processes providing high biocatalysts stability are very desirable due to enzyme associated costs. Laccase (EC 1.10.3.2), an oxidative enzyme with numerous industrial applications, requires new technologies for its immobilization in order to improve its biocatalytic activity with reduced costs. In this study, the conditions of laccase immobilization on magnetic nanoparticles were optimised by box-Benhken experimental design. Laccase was successfully bound on functionalized MNPs according to FTIR spectroscopy. At the optimal conditions, the highest recovery activity of immobilized laccase reached 36.3 U/L. Compared to free laccase, thermal stability of immobilized laccase was improved. The immobilized laccase was able to retain above 75% of activity after 6 consecutive cycles of reaction. MNPs can be used for immobilization of important enzymes at industrial level, as these nanomaterials can improve both enzymatic application properties and easy and fast recovery for reutilization.

palavras-chave

GREEN COCONUT FIBER; COMMERCIAL LACCASE; SINGLE ENZYME; STABILIZATION; STABILITY; DYES; ADSORPTION; PARTICLES; OXIDATION; SUPPORT

categoria

Energy & Fuels; Engineering

autores

Fortes, CCS; Daniel-da-Silva, AL; Xavier, AMRB; Tavares, APM

nossos autores

agradecimentos

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. Ana P.M. Tavares acknowledges FCT for the SFRH/BPD/109812/2015 post-doctoral grant. Ana L. Daniel-da-Silva acknowledges FCT for the IF-2014 FCT Investigator Programme.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".