Expanding the Applicability of Poly(Ionic Liquids) in Solid Phase Microextraction: Pyrrolidinium Coatings

resumo

Crosslinked pyrrolidinium-based poly(ionic liquids) (Pyrr-PILs) were synthesized through a fast, simple, and solventless photopolymerization scheme, and tested as solid phase microextraction (SPME) sorbents. A series of Pyrr-PILs bearing three different alkyl side chain lengths with two, eight, and fourteen carbons was prepared, characterized, and homogeneously coated on a steel wire by using a very simple procedure. The resulting coatings showed a high thermal stability, with decomposition temperatures above 350 degrees C, excellent film stability, and lifetime of over 100 injections. The performance of these PIL-based SPME fibers was evaluated using a mixture of eleven organic compounds with different molar volumes and chemical functionalities (alcohols, ketones, and monoterpenes). The Pyrr-PIL fibers were obtained as dense film coatings, with 67 mu m thickness, with an overall sorption increase of 90% and 55% as compared to commercial fibers of Polyacrylate (85 mu m) (PA85) and Polydimethylsiloxane (7 mu m) (PDMS7) coatings, respectively. A urine sample doped with the sample mixture was used to study the matrix effect and establish relative recoveries, which ranged from 60.2% to 104.1%.

palavras-chave

POLYMERIC IONIC LIQUID; SORBENT COATINGS; EXTRACTION; SILICA; WATER; CHEMISTRY; SYSTEMS; FIBERS

categoria

Materials Science

autores

Patinha, DJS; Tome, LC; Isik, M; Mecerreyes, D; Silvestre, AJD; Marrucho, IM

nossos autores

agradecimentos

David J. S. Patinha, and Liliana C. Tome are grateful to FCT (Fundacao para a Ciencia e a Tecnologia) for the PhD research grant SFRH/BD/97042/2013 and the Post-Doctoral research grant (SFRH/BPD/101793/2014), respectively. David J. S. Patinha also thanks the financial support from COST-Exil Project 1206. The NMR data was acquired at CERMAX (Centro de Ressonncia Magnetica Antnio Xavier) which is a member of the National NMR network. This work was partially supported by FCT through Research Unit GREEN-it " Bioresources for Sustainability" (UID/Multi/04551/2013) and the Associate Laboratory CICECO Aveiro Institute of materials (UID/CTM/50011/2013).

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".