Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw
authors de Carvalho, DM; Martinez-Abad, A; Evtuguin, DV; Colodette, JL; Lindstrom, ME; Vilaplana, F; Sevastyanova, O
nationality International
author keywords Acetylated xylan; Arabinoxylan; Sugarcane bagasse; Sugarcane straw; Linkage analysis; H-1 NMR spectroscopy
abstract Sugarcane bagasse and straw are generated in large volumes as by-products of agro-industrial production. They are an emerging valuable resource for the generation of hemicellulose-based materials and products, since they contain significant quantities of xylans (often twice as much as in hardwoods). Heteroxylans (yields of ca 20% based on xylose content in sugarcane bagasse and straw) were successfully isolated and purified using mild delignification followed by dimethyl sulfoxide (DMSO) extraction. Delignification with peracetic acid (PAA) was more efficient than traditional sodium chlorite (NaClO2) delignification for xylan extraction from both biomasses, resulting in higher extraction yields and purity. We have shown that the heteroxylans isolated from sugarcane bagasse and straw are acetylated glucuronoarabinoxylans (GAX), with distinct molecular structures. Bagasse GAX had a slightly lower glycosyl substitution molar ratio of Araf to Xylp to (0.5:10) and (4-O-Me)GlpA to Xylp (0.1:10) than GAX from straw (0.8:10 and 0.1:10 respectively), but a higher degree of acetylation (0.33 and 0.10, respectively). A higher frequency of acetyl groups substitution at position alpha-(1 -> 3) (Xyl-3Ac) than at position alpha-(1 -> 2) (Xyl-2Ac) was confirmed for both bagasse and straw GAX, with a minor ratio of diacetylation (Xyl-2,3Ac). The size and molecular weight distributions for the acetylated GAX extracted from the sugarcane bagasse and straw were analyzed using multiple-detection size-exclusion chromatography (SEC-DRI-MALLS). Light scattering data provided absolute molar mass values for acetylated GAX with higher average values than did standard calibration. Moreover, the data highlighted differences in the molar mass distributions between the two isolation methods for both types of sugarcane GAX, which can be correlated with the different Araf and acetyl substitution patterns. We have developed an empirical model for the molecular structure of acetylated GAX extracted from sugarcane bagasse and straw with PAA/DMSO through the integration of results obtained from glycosidic linkage analysis, H-1 NMR spectroscopy and acetyl quantification. This knowledge of the structure of xylans in sugarcane bagasse and straw will provide a better understanding of the isolation-structure-properties relationship of these biopolymers and, ultimately, create new possibilities for the use of sugarcane xylan in high-value applications, such as biochemicals and bio-based materials. (C) 2016 Elsevier Ltd. All rights reserved.
issn 0144-8617
isbn 1879-1344
year published 2017
volume 156
beginning page 223
ending page 234
digital object identifier (doi) 10.1016/j.carbpol.2016.09.022
web of science category Chemistry, Applied; Chemistry, Organic; Polymer Science
subject category Chemistry; Polymer Science
unique article identifier WOS:000388110900025
  ciceco authors
  impact metrics
journal analysis (jcr 2019):
journal impact factor 7.182
5 year journal impact factor 6.89
category normalized journal impact factor percentile 96.638
dimensions (citation analysis):
altmetrics (social interaction):