Gold nanorods induce early embryonic developmental delay and lethality in zebrafish (Danio rerio)

resumo

Due to their unique electronic and optical features, gold nanoparticles (AuNP) have received a great deal of attention for application in different fields such as catalysis, electronics, and biomedicine. The large-volume manufacturing predicted for future decades and the inevitable release of these substances into the environment necessitated an assessment of potential adverse human and ecological risks due to exposure to AuNP. Accordingly, this study aimed to examine the acute and developmental toxicity attributed to a commercial suspension of Au nanorods stabilized with cetyltrimethylammonium bromide (CTAB-AuNR) using early embryonic stages of zebrafish (Danio rerio), a well-established model in ecotoxicology. Zebrafish embryos were exposed to CTAB-AuNR (0-150 mu g/L) to determine for developmental assessment until 96 hr post fertilization (hpf) and lethality. Uptake of CTAB-AuNR by embryos and nanoparticles potential to induce DNA damage was also measured at 48 and 96 hpf. Analysis of the concentration-response curves with cumulative mortality at 96 hpf revealed a median lethal concentration (LC50,96h) of 110.2 mu g/L. At sublethal concentrations, CTAB-AuNR suspensions were found to produce developmental abnormalities such as tail deformities, pericardial edema, decreased body length, and delayed eye, head, and tail elongation development. Further, less than 1% of the initial concentration of CTAB-AuNR present in the exposure media was internalized by zebrafish embryos prior to (48 hpf) and after hatching (96 hpf). In addition, no marked DNA damage was detected in embryos after exposure to CTAB-AuNR. Overall, CTAB-AuNR suspensions produced lethal and sublethal effects on zebrafish embryos with possible repercussions in fitness of adult stages. However, these results foresee a low risk for fish since the observed effects occurred at concentrations above the levels expected to find in the aquatic environment.

palavras-chave

DAPHNIA-MAGNA; NANOPARTICLE UPTAKE; SURFACE-CHEMISTRY; DRUG-DELIVERY; MODEL SYSTEM; IN-VITRO; TOXICITY; CELLS; EXPOSURE; SHAPE

categoria

Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology

autores

Mesquita, B; Lopes, I; Silva, S; Bessa, MJ; Starykevich, M; Carneiro, J; Galvao, TLP; Ferreira, MGS; Tedim, J; Teixeira, JP; Fraga, S

nossos autores

agradecimentos

This work was supported by FEDER funds through the program COMPETE-Programa Operacional Factores de Competitividade," and by the Portuguese Foundation for Science and Technology (FCT), within the CESAM's strategic program (UID/AMB/50017/2013), the research project Synchrony (PTDC/AAG-MAA/2140/2012). This research was also partially supported by FCT and the European Regional Development Fund (ERDF), in the framework of the program PT2020 and of ERA-NET SIINN through project NanoToxClass (ERA-SIINN/0001/2013). The materials characterization performed was also developed in the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (Ref. FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement, and also the project MAGICOAT (PTDC/CTM-BIO/2170/2014). JT thanks FCT for the research grant IF/00347/2013.

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".