resumo
In the recent years, search for innovative polymers derived from renewable resources resulted in an intense research and development of 2,5-furandicarboxylic acid-based polyesters. Special emphasis has been placed in high-performance polyesters, such as the poly(1,4-butylene 2,5-furandicarboxylate) (PBF)-based structures. In this study, both thermal and crystallisation-thermal properties of PBF have been enlarged simply by the incorporation of other renewable soft moieties in the polymer structure, namely, poly(ethylene glycol) (PEG) moieties. In particular, these novel copolymers can be designed to show some advantageous processing features as revealed by the lower melting temperature (in particular, it could be 107 degrees C) and higher thermal stability (up to 352-380 degrees C) as compared with PBF. Moreover, fast scanning calorimetric (FSC) studies of these novel copolymers indicated that crystallisation could be prevented even using relatively slow cooling rates (e.g., 0.1 degrees C s(-1)). The judicious selection and balance between hard PBF and soft PEG units enabled a segmented copolymer behaviour.
palavras-chave
RING-OPENING POLYMERIZATION; PHYSICAL-PROPERTIES; POLY(BUTYLENE 2,5-FURANDICARBOXYLATE); ALIPHATIC POLYESTERS; BLOCK-COPOLYMERS; DEGRADATION; RESOURCES; COPOLYESTERS; POLYMERS; ACID
categoria
Polymer Science
autores
Sousa, AF; Guigo, N; Pozycka, M; Delgado, M; Soares, J; Mendonca, PV; Coelho, JFJ; Sbirrazzuoli, N; Silvestre, AJD
nossos autores
agradecimentos
FCT and POPH/FSE are gratefully acknowledged for funding a post-doctoral grant to AFS (SFRH/BPD/73383/2010). This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.