resumo
Vanadium oxide (V2O5) species has been supported on different porous clay heterostructures (with silica pillars, silica-zirconia with a molar ratio Si/Zr = 5 and silica-titania with a molar ratio Si/Ti = 5) by wetness incipient method. All catalysts were characterized by X-ray diffraction (XRD), N-2 adsorption-desorption at -196 degrees C, NH3 thermoprogrammed desorption (NH3-TPD), Raman spectroscopy, diffuse reflectance UV-Vis and X-ray photoelectron spectroscopy (XPS). After that, the catalytic activity of the vanadium-based catalysts was evaluated in the selective oxidation of H2S to elemental sulfur. The catalytic data show that both the activity and the catalytic stability increase with the vanadium content, obtaining the highest conversion values and sulfur yield for the catalysts with vanadium content of 16 wt.%. The comparison among all supports reveals that the incorporation of TiO2 species in the pillars of the PCH improves the resistance to the deactivation, attaining as best results a H2S conversion of 89% for SiTi-PCH-16V catalyst and elemental sulfur is the only compound detected by gas chromatography.
palavras-chave
CATALYTIC-OXIDATION; MONTMORILLONITE CLAY; H2S; SPECTROSCOPY; DIOXIDE; SO2; ZR
categoria
Materials Science
autores
Cecilia, JA; Soriano, MD; Natoli, A; Rodriguez-Castellon, E; Nieto, JML
nossos autores
agradecimentos
This research was funded by the Ministry of Economy and Competitiveness (Spain), grant numbers (CTQ2015-68951-C3-1-R and CTQ2015-68951-C3-3-R).